[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advertisement

Fluorometric determination of microRNA-155 in cancer cells based on carbon dots and MnO2 nanosheets as a donor-acceptor pair

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorometric method is presented for sensitive deternination of microRNA. It is making use of carbon dots (C-dots) loaded with a DNA probe as fluorophore and MnO2 nanosheets as the quenching agent. The blue-green fluorescence of the DNA-loaded C-dots is quenched by the MnO2 nanosheets, but restored on binding target microRNA-155. The maximum excitation wavelength and the maximum emission wavelength of C-dots are at 360 nm and 455 nm, respectively. Fluorescence correlates linearly with the log of the microRNA-155 concentration in two ranges, viz. from 0.15 to 1.65 aM and from 1.65 to 20 aM. The detection limit is as low as 0.1 aM. The assay can discriminate between fully complementary and single-base mismatch microRNA. The assay displayed high specificity when used to detect MCF-7 breast cancer cells which can be detected in concentrations from 1000 to 45,000 cells·mL−1, with a 600 cells·mL−1 detection limit. The method was applied to the analysis of serum samples spiked with microRNA, and satisfactory results were acquired.

Schematic of a fluorometric sensing platform for miRNA-155. The method relies on a FRET process between C-dots and MnO2 nanosheets. This strategy has a practical application for detection of miRNA in cell lines and biological fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wong LL, Wang J, Liew OW, Richards AM, Chen YT (2016) MicroRNA and heart failure. Int J Mol Sci 17(4):502–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu H, Li L, Wang Q, Duan L, Tang B (2014) Graphene fluorescence switch-based cooperative amplification: a sensitive and accurate method to detection MicroRNA. Anal Chem 86:5487–5493

    Article  CAS  PubMed  Google Scholar 

  3. Liu L, Chang Y, Xia N, Peng P, Zhang L, Jiang M, Zhang J, Liu L (2017) Simple, sensitive and label-free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification. Biosens Bioelectron 94:235–242

    Article  CAS  PubMed  Google Scholar 

  4. Hosseini M, Akbari A, Ganjali MR, Dadmehr M, Rezayan AH (2015) A novel label-free microRNA-155 detection on the basis of fluorescent silver nanoclusters. J Fluoresc 25(4):925–929

    Article  CAS  PubMed  Google Scholar 

  5. Cardoso AR, Moreira FTC, Fernandes R, Sales MGF (2016) Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosens Bioelectron 80:621–630

    Article  CAS  PubMed  Google Scholar 

  6. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Várallyay E, Burgyán J, Havelda Z (2007) Detection of microRNAs by northern blot analyses using LNA probes. Methods 43:140–145

    Article  CAS  PubMed  Google Scholar 

  8. Lee JM, Jung Y (2011) Two-temperature hybridization for microarray detection of label-free MicroRNAs with Attomole detection and superior specificity. Angew Chem Int Ed Engl 50(52):12487–12490

    Article  CAS  PubMed  Google Scholar 

  9. Deng H, Liu Q, Wang X, Huang R, Liu H, Lin Q, Zhou X, Xing D (2017) Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy. Biosens Bioelectron 87:931–940

    Article  CAS  PubMed  Google Scholar 

  10. Xi Q, Zhou DM, Kan YY, Ge J, ZhK W, Yu RQ, Jiang JH (2014) Highly sensitive and selective strategy for MicroRNA detection based on WS2 Nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification. Anal Chem 86:1361–1365

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Pu Q, Li J, Zhou L, Tao Y, Li Y, Yu W, Xie G (2017) An “off-on” fluorescent switch assay for microRNA using nonenzymatic ligation-rolling circle amplification. Microchim Acta 184(11):4323–4330

    Article  CAS  Google Scholar 

  12. Zhou Y, Li B, Wang M, Wang J, Yin H, Ai S (2017) Fluorometric determination of microRNA based on strand displacement amplification and rolling circle amplification. Microchim Acta 184(11):4359–4365

    Article  CAS  Google Scholar 

  13. Cheng Y, Lei J, Chen Y, Ju H (2014) Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters. Biosens Bioelectron 51:431–436

    Article  CAS  PubMed  Google Scholar 

  14. Borghei YS, Hosseini M, Ganjali MR (2017) Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters. Microchim Acta 184(8):2671–2677

    Article  CAS  Google Scholar 

  15. Yu X, Hu L, Zhang F, Wang M, Xia Z, Wei W (2018) MoS2 quantum dots modified with a labeled molecular beacon as a ratiometric fluorescent gene probe for FRET based detection and imaging of microRNA. Microchim Acta 185:239–246

    Article  CAS  Google Scholar 

  16. Li W, Hou T, Wu M, Li F (2016) Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide. Talanta 148:116–121

    Article  CAS  PubMed  Google Scholar 

  17. Wang W, Kong T, Zhang D, Zhang J, Cheng G (2015) Label-free MicroRNA detection based on fluorescence quenching of gold nanoparticles with a competitive hybridization. Anal Chem 87(21):10822–10829

    Article  CAS  PubMed  Google Scholar 

  18. Sun J, Pi F, Ji J, Lei H, Gao Z, Zhang Y, Habimana JD, Li Z, Sun X (2018) Ultrasensitive "FRET-SEF" probe for sensing and imaging MicroRNAs in living cells based on gold Nanoconjugates. Anal Chem 90(5):3099–3108

    Article  CAS  PubMed  Google Scholar 

  19. Ji X, Lv H, Ma M, Lv B, Ding C (2017) An optical DNA logic gate based on strand displacement and magnetic separation, with response to multiple microRNAs in cancer cell lysates. Microchim Acta 184(8):2505–2513

    Article  CAS  Google Scholar 

  20. Zhang H, Wang Q, Yang X, Wang K, Li Q, Li Z, Gao L, Nie W, Zheng Y (2017) An isothermal electrochemical biosensor for the sensitive detection of microRNA based on a catalytic hairpin assembly and supersandwich amplification. Analyst 142:389–396

    Article  CAS  PubMed  Google Scholar 

  21. Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndic M (2010) Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol 5:807–814

    Article  CAS  PubMed  Google Scholar 

  22. Sipova H, Zhang S, Dudley AM, Galas D, Wang K, Homola J (2010) Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal Chem 82:10110–10115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Driskell JD, Seto AG, Jones LP, Jokela S, Dluhy RA, Zhao YP, Tripp RA (2008) Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens Bioelectron 24(4):917–922

    Article  CAS  Google Scholar 

  24. Driskell JD, Tripp RA (2010) Label-free SERS detection of microRNA based on affinity for an unmodified silver nanorod array substrate. Chem Commun 46:3298–3300

    Article  CAS  Google Scholar 

  25. Ye S, Li X, Wang M, Tang B (2017) Fluorescence and SERS imaging for the simultaneous absolute quantification of multiple miRNAs in living cells. Anal Chem 89:5124–5130

    Article  CAS  PubMed  Google Scholar 

  26. Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of Cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115(19):10530–10574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamd-Qaddareh S, Salimi A (2017) Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: a novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level. Biosens Bioelectron 89:773–780

    Article  CAS  Google Scholar 

  28. Hamd-Gadareh S, Salimi A, Fathi F, Bahrami S (2017) An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosens Bioelectron 98:308–316

    Article  CAS  Google Scholar 

  29. Li Z, Lin Z, Wu X, Chen H, Chai Y, Yuan R (2017) Highly efficient Electrochemiluminescence resonance energy transfer system in one nanostructure: its application for ultrasensitive detection of MicroRNA in Cancer cells. Anal Chem 89:6029–6035

    Article  CAS  PubMed  Google Scholar 

  30. Tu W, Cao H, Zhang L, Bao J, Liu X, Dai Z (2016) Dual signal amplification using gold nanoparticles-enhanced zinc selenide Nanoflakes and P19 protein for ultrasensitive Photoelectrochemical biosensing of MicroRNA in cell. Anal Chem 88:10459–10465

    Article  CAS  PubMed  Google Scholar 

  31. Cai QY, Li J, Ge J, Zhang L, Hua YL, Li ZH, Qu LB (2015) A rapid fluorescence “switch-on” assay for glutathione detection by using carbon dots–MnO2 nanocomposites. Biosens Bioelectron 72:31–36

    Article  CAS  PubMed  Google Scholar 

  32. Kudr J, Richtera L, Xhaxhiu K, Hynek D, Heger Z, Zitka Q, Adam V (2017) Carbon dots based FRET for the detection of DNA damage. Biosens Bioelectron 92:133–139

    Article  CAS  PubMed  Google Scholar 

  33. Jana J, Aditya T, Ganguly M, Pal T (2017) Carbon dot-MnO2 FRET system for fabrication of molecular logic gates. Sensors Actuators B Chem 246:716–725

    Article  CAS  Google Scholar 

  34. Zheng M, Li Y, Liu S, Wang W, Xie Z, Jing X (2016) One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and Photothermal Cancer therapy. ACS Appl Mater Interfaces 8:23533–23541

    Article  CAS  PubMed  Google Scholar 

  35. Yuan Y, Wu S, Shu F, Liu Z (2014) An MnO2 nanosheet as a label-free nanoplatform for homogeneous biosensing. Chem Commun 50:1095–1097

    Article  CAS  Google Scholar 

  36. Salimi A, Pourbahram B, Mansouri-Majd S, Hallaj R (2015) Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection. Electrochim Acta 156:207–215

    Article  CAS  Google Scholar 

  37. Wang Ch ZW, Wang Y, Yu P, Mao L (2015) MnO2 nanosheets based fluorescent sensing platform with organic dyes as a probe with excellent analytical properties. Analyst 140:4021–4029

    Article  CAS  Google Scholar 

  38. Zhu Sh MQ, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:1–9

    Article  CAS  Google Scholar 

  39. ZhL W, Liu ZX, Yuan YH (2017) Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. J Mater Chem B 5:3794–3809

    Article  Google Scholar 

  40. Wu M, Wang Y, Wu W, Hu C, Wang X, Zheng J, Li Z, Jiang B, Qiu J (2014) Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon 78:480–489

    Article  CAS  Google Scholar 

  41. Qu F, Pei H, Kong R, Zhu S, Xia L (2017) Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 165:136–142

    Article  CAS  PubMed  Google Scholar 

  42. Yang K, Zeng M, Fu X, Li J, Ma N, Tao L (2015) Establishing biodegradable single-layer MnO2 nanosheet as amplatform for live cell microRNA sensing. RSC Adv 5:104245–104249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of Iranian Nanotechnology Initiative and Research Office of University of Kurdistan (Grant Number 4.1261) are gratefully acknowledged. The authors also thank the Programming and Management Organization of Kurdistan Province for partly financial support (Grant Number 4.53053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Salimi.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1.32 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S., Salimi, A. Fluorometric determination of microRNA-155 in cancer cells based on carbon dots and MnO2 nanosheets as a donor-acceptor pair. Microchim Acta 185, 372 (2018). https://doi.org/10.1007/s00604-018-2868-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2868-5

Keywords