[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Changes in cardiac repolarisation during spontaneous nocturnal hypoglycaemia in subjects with type 1 diabetes: a preliminary report

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Experimental studies have revealed that hypoglycaemia can result in morphological changes in electrocardiographic repolarisation in subjects with type 1 diabetes. However, the influence of spontaneous nocturnal hypoglycaemia on repolarisation morphology in a ‘real life’ situation is not clear.

Methods

Adults with type 1 diabetes (n = 11) underwent continuous glucose monitoring with a subcutaneous sensor and digital 12-lead ECG recording for three nights. T-wave morphology was analysed with custom-made software during both hypoglycaemia (glucose <3.5 mmol/l at least 20 min) from ten consecutive heart beats in the middle of the deepest hypoglycaemia and from a control nonhypoglycaemic period (glucose ≥5.0 mmol/l) from the same recording.

Results

In the comparison of 10 hypoglycaemia-control pairs, heart rate (65 ± 12 beats/min during normoglycaemia versus 85 ± 19 beats/min during hypoglycaemia, p = 0.028) increased and the QTc interval (439 ± 5 vs. 373 ± 5 ms, respectively, p = 0.025) decreased significantly during hypoglycaemia. The spatial QRS-T angle (TCRT) was reduced, and the roughness of the T-wave loop (T-E) increased significantly (p = 0.037 for both) in the patients during hypoglycaemia.

Conclusions

In adults with type 1 diabetes, spontaneous nocturnal hypoglycaemia results in morphological changes and increased heterogeneity of global cardiac repolarisation. These changes may contribute to the risk of ‘dead in bed’ syndrome encountered in young individuals with type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Veglio M, Sivieri R, Chinaglia A, Scaglione L, Cavallo-Perin P, for the Neuropathy Study Group of the Italian Society of the Study of Diabetes (2000) QT interval prolongation and mortality in type 1 diabetic patients. Diabetes Care 23:1381–1383

    Article  CAS  PubMed  Google Scholar 

  2. Rossing P, Breum L, Major-Pedersen A et al (2001) Prolonged QTc interval predicts mortality in patients with type 1 diabetes mellitus. Diabet Med 18:199–205

    Article  CAS  PubMed  Google Scholar 

  3. Okin PM, Devereux RB, Lee ET, Galloway JM, Howard BV (2004) Electrocardiographic repolarization complexity and abnormality predict all-cause and cardiovascular mortality in diabetes. Strong Heart Study Diabet 53:434–440

    CAS  Google Scholar 

  4. Salles GF, Bloch KV, Cardoso CRL (2004) Mortality and predictors of mortality in a cohort of Brazilian type 2 diabetic patients. Diabet Care 27:1299–1305

    Article  Google Scholar 

  5. Rana BS, Lim PO, Naas AAO et al (2005) QT interval abnormalities are often present at diagnosis in diabetes and are better predictors of cardiac death than ankle brachial pressure index and autonomic function tests. Heart 91:44–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marques JLB, George E, Peacey SR et al (1997) Altered ventricular repolarization during hypoglycaemia in patients with diabetes. Diabet Med 14:648–654

    Article  CAS  PubMed  Google Scholar 

  7. Landstedt-Hallin L, Englund A, Adamson U, Lins P-E (1999) Increased QT dispersion during hypoglycaemia in patients with type 2 diabetes mellitus. J Intern Med 246:299–307

    Article  CAS  PubMed  Google Scholar 

  8. Lee SP, Yeoh L, Harris ND et al (2004) Influence of autonomic neuropathy on QTc interval lengthening during hypoglycaemia in type 1 diabetes. Diabetes 53:1535–1542

    Article  CAS  PubMed  Google Scholar 

  9. Lee SP, Harris ND, Robinson RT et al (2005) Effect of atenolol on QTc interval lengthening during hypoglycaemia in type 1 diabetes. Diabetologia 48:1269–1272

    Article  CAS  PubMed  Google Scholar 

  10. Due-Andersen R, Høi-Hansen T, Larroude CE et al (2008) Cardiac repolarization during hypoglycaemia in type 1 diabetes: impact of basal renin-angiotensin system activity. Europace 10:860–867

    Article  PubMed  Google Scholar 

  11. Rothenbuler A, Petit Bibal C, Le Fur S, Bougneres P (2008) Effects of a controlled hypoglycaemia test on QTc in adolescents with type 1 diabetes. Diabet Med 25:1483–1485

    Article  Google Scholar 

  12. Robinson RTCE, Harris ND, Ireland RH, Macdonald IA, Heller SR (2004) Changes in cardiac repolarization during clinical episodes of nocturnal hypoglycaemia in adults with type 1 diabetes. Diabetologia 47:312–315

    Article  CAS  PubMed  Google Scholar 

  13. Murphy NP, Ford-Adams ME, Ong KK et al (2004) Prolonged cardiac repolarisation during spontaneous nocturnal hypoglycaemia in children and adolescents with type 1 diabetes. Diabetologia 47:1940–1947

    Article  CAS  PubMed  Google Scholar 

  14. Gill GV, Woodward A, Casson IF, Weston PJ (2009) Cardiac arrythmia and nocturnal hypoglycaemia in type 1 diabetes—the ‘dead in bed’ syndrome revisited. Diabetologia 52:42–45

    Article  CAS  PubMed  Google Scholar 

  15. Weston PJ, Gill GV (1999) Is undetected autonomic dysfunction responsible for sudden death in type 1 diabetes mellitus? The ‘dead in bed’ syndrome revisited. Diabet Med 16:626–631

    Article  CAS  PubMed  Google Scholar 

  16. Bell DSH (2006) Dead in bed syndrome—a hypothesis. Diabetes Obes Metab 8:261–263

    Article  PubMed  Google Scholar 

  17. Priori SG, Mortara DW, Napolitano C et al (1997) Evaluation of the spatial aspects of T-wave complexity in the long-QT syndrome. Circulation 96:3006–3012

    Article  CAS  PubMed  Google Scholar 

  18. Zabel M, Acar B, Klingenheben T, Franz MR, Hohnloser SH, Malik M (2000) Analysis of 12-lead T-wave morphology for risk stratification after myocardial infarction. Circulation 102:1252–1257

    Article  CAS  PubMed  Google Scholar 

  19. Zabel M, Malik M, Hnatkova K et al (2002) Analysis of T-wave morphology from the 12-lead electrocardiogram for prediction of long-term prognosis in male US veterans. Circulation 105:1066–1070

    Article  PubMed  Google Scholar 

  20. Kardys I, Kors JA, van der Meer I, Hofman A, Van der Kuip DAM, Witteman JCM (2003) Spatial QRS-T angle predicts cardiac death in general population. Eur Heart J 24:1357–1364

    Article  PubMed  Google Scholar 

  21. Perkiömäki JS, Hyytinen-Oinas M, Karsikas M et al (2006) Usefulness of T-wave loop and QRS complex loop to predict mortality after acute myocardial infarction. Am J Cardiol 97:353–360

    Article  PubMed  Google Scholar 

  22. Rautaharju PM, Kooperberg C, Larson JC, LaCroix A (2006) Electrocardiographic predictors of incident congestive heart failure and all-cause mortality in postmenopausal women: the women`s health initiative. Circulation 113:481–489

    Article  PubMed  Google Scholar 

  23. Pavri BP, Hillis MB, Subačius H, for the Defibrillators in Nonischemic Cardiomyopathy Treatment Evaluation (DEFINITIVE) Investigators et al (2008) Prognostic value and temporal behaviour of the planar QRS-T angle in patients with nonischemic cardiomyopathy. Circulation 117:3181–3186

    Article  PubMed  Google Scholar 

  24. Huang HC, Lin LY, Yu HY, Ho YL (2009) Risk stratification by T-wave morphology for cardiovascular mortality in patients with systolic heart failure. Europace 11:1522–1528

    Article  PubMed  Google Scholar 

  25. Anttonen O, Junttila J, Giustetto C et al (2009) T-wave morphology in short QT syndrome. Ann Noninvasive Electrocardiol 14:262–267

    Article  PubMed  Google Scholar 

  26. Koivikko ML, Karsikas M, Salmela PI et al (2008) Effects of controlled hypoglycaemia on cardiac repolarisation in patients with type 1 diabetes. Diabetologia 51:426–435

    Article  CAS  PubMed  Google Scholar 

  27. Bazett HC (1920) An analysis of time relations of electrocardiogram. Heart 7:353–370

    Google Scholar 

  28. Karjalainen J, Viitasalo M, Mänttäri M, Manninen V (1994) Relation between QT intervals and heart rates from 40 to 120 beats/min in rest electrocardiograms of men and a simple method to adjust QT interval values. J Am Coll Cardiol 23:1547–1553

    Article  CAS  PubMed  Google Scholar 

  29. Dower G, Osborne J (1958) A clinical comparison of three VCG lead systems using resistance-combining networks. Am Heart J 55:523–534

    Article  CAS  PubMed  Google Scholar 

  30. Linna EH, Perkiömäki JS, Karsikas M et al (2006) Functional significance of KCNH2 (HERG) K897T polymorphism of cardiac repolarization assessed by analysis of T-wave morphology. Ann Noninvasive Electrocardiol 11:57–62

    Article  PubMed  Google Scholar 

  31. Karsikas M, Noponen K, Huikuri H, Seppänen T (2009) New vectorcardiographic non-planarity measure of T-wave loop improves separation between healthy subjects and myocardial infarction patients. In: Proceedings of the 31st annual international conference of the IEEE engineering in medicine and biology society, engineering the Future of Biomedicine, pp 1754–1757

  32. Palova S, Szabo K, Charvát J et al (2010) ECG body surface mapping changes in type 1 diabetic patients with and without autonomic neuropathy. Physiol Res 59:203–209

    CAS  PubMed  Google Scholar 

  33. Eckert B, Agardh C-D (1998) Hypoglycaemia leads to an increased QT interval in men. Clin Physiol 18:570–575

    Article  CAS  PubMed  Google Scholar 

  34. Meinhold J, Heise T, Rave K, Heinemann L (1998) Electrocardiographic changes during insulin-induced hypoglycemia in healthy subjects. Horm Metab Res 30:694–697

    Article  CAS  PubMed  Google Scholar 

  35. Laitinen T, Lyyra-Laitinen T, Huopio H et al (2008) Electrocardiographic alterations during hyperinsulinemic hypoglycemia in healthy subjects. Ann Noninvasive Electrocardiol 13:97–105

    Article  PubMed  Google Scholar 

  36. Lindström T, Jorfeldt L, Tegler L, Arnqvist HJ (1992) Hypoglycaemia and cardiac arrhythmias in patients with type 2 diabetes mellitus. Diabet Med 9:536–541

    Article  PubMed  Google Scholar 

  37. Skyrme-Jones RAP, Gribbin B (2001) Hypoglycaemia and electrocardiographic changes in a subject with diabetes mellitus. Intern Med J 31:368–370

    Article  CAS  PubMed  Google Scholar 

  38. Lipponen JA, Kemppainen J, Karjalainen PA et al. (2011) Hypoglycemia detection based on cardiac repolarization features. In: 33rd annual international conference of the IEEE EMBS Boston, Massachusetts, USA

  39. Nuryani, Ling S, Nguyen HT (2010) Electrocardiographic t-wave peak-to-end interval for hypoglycaemia detection. In: 32nd annual international conference of the IEEE EMBS Buenos Aires, Argentina

  40. Christensen TF, Tarnow L, Randløv J (2010) QT interval prolongation during spontaneous episodes of hypoglycaemia in type 1 diabetes: the impact of heart rate correction. Diabetologia 53:2036–2041

    Article  CAS  PubMed  Google Scholar 

  41. Høi-HansenT Pedersen-Bjergaard U, Thorsteinsson B (2005) Reproducibility and reliability of hypoglycaemic episodes recorded with continuous glucose monitoring system (CGMS) in daily life. Diabet Med 22:858–862

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a research grant from the Finnish Diabetes Research Foundation, from Polar Electro, Kempele, Finland and from Sigrid Juselius Foundation, Helsinki, Finland .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna L. Koivikko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

All procedures performed in the study involving human participants were in accordance with ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Managed by Antonio Secchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koivikko, M.L., Kenttä, T., Salmela, P.I. et al. Changes in cardiac repolarisation during spontaneous nocturnal hypoglycaemia in subjects with type 1 diabetes: a preliminary report. Acta Diabetol 54, 251–256 (2017). https://doi.org/10.1007/s00592-016-0941-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-016-0941-2

Keywords

Navigation