[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Some Generalizations of Fixed Point Theorems of Caristi Type and Mizoguchi–Takahashi Type Under Relaxed Conditions

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

In this paper, we first study the approximate fixed point property for hybrid Caristi type and Mizoguchi–Takahashi type mappings on metric spaces. We give some new generalizations of Mizoguchi–Takahashi’s fixed point theorem and Caristi’s fixed point theorem under new relaxed conditions which are quite original in the existing literature. We present new generalized Ekeland’s variational principle, generalized Takahashi’s nonconvex minimization theorem and nonconvex maximal element theorem for uniformly below sequentially lower semicontinuous from above functions and essential distances. Their equivalence relationships are also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aruffo, A.B., Bottaro, G.: Some variational results using generalizations of sequential lower semicontinuity. Fixed Point Theory Appl. 2010, 323487 (2010). https://doi.org/10.1155/2010/323487

    Article  MathSciNet  MATH  Google Scholar 

  • Banach, S.: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fundamenta Mathematicae 3, 133–181 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  • Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241–251 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y., Cho, Y.J., Yang, L.: Note on the results with lower semi-continuity. Bull. Korean Math. Soc. 39(4), 535–541 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Du, W.-S.: Some new results and generalizations in metric fixed point theory. Nonlinear Anal. Theory Methods Appl. 73, 1439–1446 (2010a)

  • Du, W.-S.: Critical point theorems for nonlinear dynamical systems and their applications. Fixed Point Theory Appl. 2010, 246382 (2010). https://doi.org/10.1155/2010/246382

    Article  MathSciNet  MATH  Google Scholar 

  • Du, W.-S.: On coincidence point and fixed point theorems for nonlinear multivalued maps. Topol Appl 159, 49–56 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Du, W.S.: On Caristi type maps and generalized distances with applications. Abstr. Appl. Anal. 2013, 407219 (2013)

    MathSciNet  MATH  Google Scholar 

  • Du, W.-S.: On Caristi-type mappings without lower semicontinuity assumptions. J. Fixed Point Theory Appl. 17(4), 733–752 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Du, W.-S.: On generalized Caristi’s fixed point theorem and its equivalence. Nonlinear Anal. Differ. Equ. 4(13), 635–644 (2016a)

  • Du, W.-S.: New existence results of best proximity points and fixed points for \({{\cal{M}}}{{\cal{T}}}(\lambda )\)-functions with applications to differential equations. Linear Nonlinear Anal. 2(2), 199–213 (2016b)

  • Du, W.-S., Hung, Y.-L.: A generalization of Mizoguchi–Takahashi’s fixed point theorem and its applications to fixed point theory. Int. J. Math. Anal. 11(4), 151–161 (2017)

    Article  Google Scholar 

  • Du, W.-S.: Simultaneous generalizations of fixed point theorems of Mizoguchi–Takahashi type, Nadler type Banach type, Kannan type and Chatterjea type. Nonlinear Anal. Differ. Equ. 5(4), 171–180 (2017)

    Article  Google Scholar 

  • Du, W.-S., Karapinar, E., He, Z.: Some simultaneous generalizations of well-known fixed point theorems and their applications to fixed point theory. Mathematics 6(7), 117 (2018)

    Article  Google Scholar 

  • Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  • Hyers, D.H., Isac, G., Rassias, Th.M.: Topics in Nonlinear Analysis and Applications. World Scientific Publ. Co., Singapore (1997)

  • Jachymski, J.R.: Caristi’s fixed point theorem and selections of set-valued contractions. J. Math. Anal. Appl. 227, 55–67 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Kada, O., Suzuki, T., Takahashi, W.: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jap. 44, 381–391 (1996)

    MathSciNet  MATH  Google Scholar 

  • Kang, B.G., Park, S.: On generalized ordering principles in nonlinear analysis. Nonlinear Anal. Theory Methods Appl. 14, 159–165 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Khamsi, M.A., Kirk, W.A.: An introduction to metric spaces and fixed point theory. Pure and Applied Mathematics. Wiley, New York (2001)

    Book  MATH  Google Scholar 

  • Kirk, W.A., Shahzad, N.: Fixed point theory in distance spaces. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  • Lin, L.-J., Du, W.-S.: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. 323, 360–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, L.-J., Du, W.-S.: Some equivalent formulations of generalized Ekeland’s variational principle and their applications. Nonlinear Anal. Theory Methods Appl. 67, 187–199 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, L.-J., Du, W.-S.: On maximal element theorems, variants of Ekeland’s variational principle and their applications. Nonlinear Anal. Theory Methods Appl. 68, 1246–1262 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Mizoguchi, N., Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141, 177–188 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Nadler Jr., S.B.: Multi-valued contraction mappings. Pacific J. Math. 30, 475–488 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Reich, S.: Some problems and results in fixed point theory. Contemp. Math. 21, 179–187 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki, T.: Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. Appl. 253, 440–458 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki, T.: Generalized Caristi’s fixed point theorems by Bae and others. J. Math. Anal. Appl. 302, 502–508 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki, T.: Caristi’s fixed point theorem in semimetric spaces. J. Fixed Point Theory Appl. 20, 30 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  • Włodarczyk, K., Plebaniak, R.: Maximality principle and general results of Ekeland and Caristi types without lower semicontinuity assumptions in cone uniform spaces with generalized pseudodistances. Fixed Point Theory Appl. 2010, 175453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by Grant No. MOST 107-2115-M-017-004-MY2 of the Ministry of Science and Technology of the Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Shih Du.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, WS. Some Generalizations of Fixed Point Theorems of Caristi Type and Mizoguchi–Takahashi Type Under Relaxed Conditions. Bull Braz Math Soc, New Series 50, 603–624 (2019). https://doi.org/10.1007/s00574-018-0117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-018-0117-5

Keywords

Mathematics Subject Classification

Navigation