Abstract
Lung cancer has the highest fatality rate among all types of cancers. The detection of pulmonary nodules serves as the primary means for early diagnosis, utilizing deep learning models for pulmonary nodule detection can improve the accuracy and efficiency of detection. However, existing feature extraction networks fail to capture precise details and shape characteristics of pulmonary nodules, and they also lack sufficient multi-scale fusion. Therefore, we propose the expressive feature representation pyramid (EFRP) for pulmonary nodule detection. The Context Enhancement Connection module generates more discriminative features by performing three scales of context feature extraction through different paths and utilizes rich local information and global contextual information to enhance feature representation. The Adaptive Feature Enhancement module dynamically adjusts the receptive field size and generates multi-scale feature layers with enhanced features. The Channel Attention Feature Refinement module enhances local interactions between different channels to alleviate the mixed effects caused by the fusion process, thereby increasing the robustness of the model. Through extensive experiments on three different publicly available pulmonary nodule datasets, the results demonstrate EFRP not only ensure precision but also reduce the occurrence of missed detections, effectively enhancing the overall detection performance of pulmonary nodules.
Similar content being viewed by others
Data availability
The LUNA16 dataset is available at:https://luna16.grand-challenge.org/Data/. The Tianchi dataset is available at:https://tianchi.aliyun.com/competition/entrance/231601/information. The X-Nodule dataset is available at:https://universe.roboflow.com/rodney/hhhh-ig2qf.
Notes
link:https://tianchi.aliyun.com/competition/entrance/231601/information.
link:https://universe. roboflow.com/rodney/hhhh-ig2qf.
link:https://tianchi.aliyun.com/competition/entrance/231601/information.
link:https://universe. roboflow.com/rodney/hhhh-ig2qf.
References
Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A., et al.: Cancer statistics, 2021. CA Cancer J. Clin. 71(1), 7–33 (2021)
Gansler, T., Ganz, P.A., Grant, M., Greene, F.L., Johnstone, P., Mahoney, M., Newman, L.A., Oh, W.K., Thomas, C.R., Jr., Thun, M.J., et al.: Sixty years of ca: a cancer journal for clinicians. CA Cancer J. Clin. 60(6), 345–350 (2010)
Osarogiagbon, R.U., Liao, W., Faris, N.R., Fehnel, C., Goss, J., Shepherd, C.J., Qureshi, T., Matthews, A.T., Smeltzer, M.P., Pinsky, P.F.: Evaluation of lung cancer risk among persons undergoing screening or guideline-concordant monitoring of lung nodules in the mississippi delta. JAMA Netw. Open 6(2), 230787–230787 (2023)
Lee, J.H., Hong, H., Nam, G., Hwang, E.J., Park, C.M.: Effect of human-ai interaction on detection of malignant lung nodules on chest radiographs. Radiology 307(5), 222976 (2023)
Song, J., Huang, S.-C., Kelly, B., Liao, G., Shi, J., Wu, N., Li, W., Liu, Z., Cui, L., Lungre, M.P., et al.: Automatic lung nodule segmentation and intra-nodular heterogeneity image generation. IEEE J. Biomed. Health Inform. 26(6), 2570–2581 (2021)
Alshayeji, M.H., Abed, S.: Lung cancer classification and identification framework with automatic nodule segmentation screening using machine learning. Appl Intell. 53(16), 19724–19741 (2023)
Ahmed, I., Chehri, A., Jeon, G., Piccialli, F.: Automated pulmonary nodule classification and detection using deep learning architectures. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2022)
Gu, Y., Chi, J., Liu, J., Yang, L., Zhang, B., Yu, D., Zhao, Y., Lu, X.: A survey of computer-aided diagnosis of lung nodules from ct scans using deep learning. Comput. Biol. Med. 137, 104806 (2021)
Kaulgud, R.V., Patil, A.: Analysis based on machine and deep learning techniques for the accurate detection of lung nodules from ct images. Biomed. Signal Process. Control 85, 105055 (2023)
Li, R., Xiao, C., Huang, Y., Hassan, H., Huang, B.: Deep learning applications in computed tomography images for pulmonary nodule detection and diagnosis: a review. Diagnostics 12(2), 298 (2022)
Manickavasagam, R., Selvan, S., Selvan, M.: Cad system for lung nodule detection using deep learning with CNN. Med Biol Eng Comput 60(1), 221–228 (2022)
Misumi, Y., Nonaka, K., Takeuchi, M., Kamitani, Y., Uechi, Y., Watanabe, M., Kishino, M., Omori, T., Yonezawa, M., Isomoto, H., et al.: Comparison of the ability of artificial-intelligence-based computer-aided detection (cad) systems and endoscopists to detect colorectal neoplastic lesions on endoscopy video. J. Clin. Med. 12(14), 4840 (2023)
Shuvo, S.B.: An automated end-to-end deep learning-based framework for lung cancer diagnosis by detecting and classifying the lung nodules. arXiv preprint arXiv:2305.00046 (2023). Accessed 1 Dec 2023
Mkindu, H., Wu, L., Zhao, Y.: Lung nodule detection in chest ct images based on vision transformer network with bayesian optimization. Biomed. Signal Process. Control 85, 104866 (2023)
Mei, J., Cheng, M.-M., Xu, G., Wan, L.-R., Zhang, H.: Sanet: a slice-aware network for pulmonary nodule detection. IEEE Trans. Pattern Anal. Mach. Intell. 44(8), 4374–4387 (2021)
Xu, J., Ren, H., Cai, S., Zhang, X.: An improved faster R-CNN algorithm for assisted detection of lung nodules. Comput Biol Med 153, 106470 (2023)
Ji, Z., Wu, Y., Zeng, X., An, Y., Zhao, L., Wang, Z., Ganchev, I.: Lung nodule detection in medical images based on improved yolov5s. IEEE Access (2023)
Lu, X., Zeng, N., Wang, X., Huang, J., Hu, Y., Fang, J., Liu, J.: Ffnet: an end-to-end framework based on feature pyramid network and filter network for pulmonary nodule detection. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–6 (2023). IEEE
Chi, J., Zhao, J., Wang, S., Yu, X., Wu, C.: Lgdnet: local feature coupling global representations network for pulmonary nodules detection. Med Biol Eng Comput. pp 1–14 (2024)
Shakarami, A., Menhaj, M.B., Mahdavi-Hormat, A., Tarrah, H.: A fast and yet efficient yolov3 for blood cell detection. Biomed. Signal Process. Control 66, 102495 (2021)
Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: Ssd: Single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp. 21–37 (2016). Springer, New York
Zlocha, M., Dou, Q., Glocker, B.: Improving retinanet for ct lesion detection with dense masks from weak recist labels. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part VI 22, pp. 402–410 (2019). Springer, New York.
Harsono, I.W., Liawatimena, S., Cenggoro, T.W.: Lung nodule detection and classification from thorax CT-scan using retinanet with transfer learning. J King Saud Univ Comput Inf Sci 34(3), 567–577 (2022)
Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9759–9768 (2020)
Wang, N., Gao, Y., Chen, H., Wang, P., Tian, Z., Shen, C., Zhang, Y.: Nas-fcos: Fast neural architecture search for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11943–11951 (2020)
Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra r-cnn: Towards balanced learning for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 821–830 (2019)
Lu, X., Li, B., Yue, Y., Li, Q., Yan, J.: Grid r-cnn. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7363–7372 (2019)
Cai, Z., Vasconcelos, N.: Cascade r-cnn: Delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020). Accessed 15 Oct 2023
Xu, Z., Zhang, X., Zhang, H., Liu, Y., Zhan, Y., Lukasiewicz, T.: Efpn: effective medical image detection using feature pyramid fusion enhancement. Comput Biol Med. 163, 107149 (2023)
Huang, Y.-S., Chou, P.-R., Chen, H.-M., Chang, Y.-C., Chang, R.-F.: One-stage pulmonary nodule detection using 3-d DCNN with feature fusion and attention mechanism in CT image. Comput. Methods Programs Biomed. 220, 106786 (2022)
Jiang, H., Diao, Z., Shi, T., Zhou, Y., Wang, F., Hu, W., Zhu, X., Luo, S., Tong, G., Yao, Y.-D.: A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation. Comput Biol Med. 157, 106726 (2023)
Zhang, H., Xu, Z., Yao, D., Zhang, S., Chen, J., Lukasiewicz, T.: Multi-head feature pyramid networks for breast mass detection. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5 (2023). IEEE
Celard, P., Iglesias, E., Sorribes-Fdez, J., Romero, R., Vieira, A.S., Borrajo, L.: A survey on deep learning applied to medical images: from simple artificial neural networks to generative models. Neural Comput. Appl. 35(3), 2291–2323 (2023)
Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)
Tan, M., Pang, R., Le, Q.V.: Efficientdet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)
Luo, Y., Cao, X., Zhang, J., Guo, J., Shen, H., Wang, T., Feng, Q.: CE-FPN: enhancing channel information for object detection. Multimed Tools Appl 81(21), 30685–30704 (2022)
Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)
Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)
Setio, A.A.A., Traverso, A., De Bel, T., Berens, M.S., Van Den Bogaard, C., Cerello, P., Chen, H., Dou, Q., Fantacci, M.E., Geurts, B., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42, 1–13 (2017)
Jacobs, C., Rikxoort, E.M., Murphy, K., Prokop, M., Schaefer-Prokop, C.M., Ginneken, B.: Computer-aided detection of pulmonary nodules: a comparative study using the public lidc/idri database. Eur. Radiol. 26, 2139–2147 (2016)
Min, K., Lee, G.-H., Lee, S.-W.: Attentional feature pyramid network for small object detection. Neural Netw. 155, 439–450 (2022)
Egan, J.P., Greenberg, G.Z., Schulman, A.I.: Operating characteristics, signal detectability, and the method of free response. J Acoust Soc Am 33(8), 993–1007 (1961)
Zhu, W., Liu, C., Fan, W., Xie, X.: Deeplung: Deep 3d dual path nets for automated pulmonary nodule detection and classification. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 673–681 (2018). IEEE
Xie, H., Yang, D., Sun, N., Chen, Z., Zhang, Y.: Automated pulmonary nodule detection in ct images using deep convolutional neural networks. Pattern Recogn. 85, 109–119 (2019)
Li, Y., Fan, Y.: Deepseed: 3d squeeze-and-excitation encoder-decoder convolutional neural networks for pulmonary nodule detection. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1866–1869 (2020). IEEE
Zhou, Z., Gou, F., Tan, Y., Wu, J.: A cascaded multi-stage framework for automatic detection and segmentation of pulmonary nodules in developing countries. IEEE J. Biomed. Health Inform. 26(11), 5619–5630 (2022)
Nguyen, T.-C., Nguyen, T.-P., Cao, T., Dao, T.T.P., Ho, T.-N., Nguyen, T.V., Tran, M.-T.: Manet: multi-branch attention auxiliary learning for lung nodule detection and segmentation. Comput. Methods Programs Biomed. 241, 107748 (2023)
Yousaf, F., Iqbal, S., Fatima, N., Kousar, T., Rahim, M.S.M.: Multi-class disease detection using deep learning and human brain medical imaging. Biomed. Signal Process. Control 85, 104875 (2023)
Wang, G., Luo, X., Gu, R., Yang, S., Qu, Y., Zhai, S., Zhao, Q., Li, K., Zhang, S.: Pymic: a deep learning toolkit for annotation-efficient medical image segmentation. Comput. Methods Programs Biomed. 231, 107398 (2023)
Zhang, S., Zhang, J., Tian, B., Lukasiewicz, T., Xu, Z.: Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medical image segmentation. Med. Image Anal. 83, 102656 (2023)
Li, W., Zhang, Y., Wang, G., Huang, Y., Li, R.: Dfenet: a dual-branch feature enhanced network integrating transformers and convolutional feature learning for multimodal medical image fusion. Biomed. Signal Process. Control 80, 104402 (2023)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 51877069) and the Natural Science Foundation of Hebei Province(Grant No. E2021202184).
Author information
Authors and Affiliations
Contributions
Haochen Zhang:writing—review & editing, writing—original draft, software, methodology, investigation, conceptualization, data curation. Shuai Zhang:writing—review & editing, supervision, funding acquisition, software, resources, project administration. Lipeng Xing:supervision, visualization, data curation. Qingzhao Wang:writing— review & editing, supervision. Ruiyang Fan:writing— review & editing, supervision.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Ethics approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, H., Zhang, S., Xing, L. et al. Expressive feature representation pyramid network for pulmonary nodule detection. Multimedia Systems 30, 328 (2024). https://doi.org/10.1007/s00530-024-01532-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00530-024-01532-4