[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Expressive feature representation pyramid network for pulmonary nodule detection

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Lung cancer has the highest fatality rate among all types of cancers. The detection of pulmonary nodules serves as the primary means for early diagnosis, utilizing deep learning models for pulmonary nodule detection can improve the accuracy and efficiency of detection. However, existing feature extraction networks fail to capture precise details and shape characteristics of pulmonary nodules, and they also lack sufficient multi-scale fusion. Therefore, we propose the expressive feature representation pyramid (EFRP) for pulmonary nodule detection. The Context Enhancement Connection module generates more discriminative features by performing three scales of context feature extraction through different paths and utilizes rich local information and global contextual information to enhance feature representation. The Adaptive Feature Enhancement module dynamically adjusts the receptive field size and generates multi-scale feature layers with enhanced features. The Channel Attention Feature Refinement module enhances local interactions between different channels to alleviate the mixed effects caused by the fusion process, thereby increasing the robustness of the model. Through extensive experiments on three different publicly available pulmonary nodule datasets, the results demonstrate EFRP not only ensure precision but also reduce the occurrence of missed detections, effectively enhancing the overall detection performance of pulmonary nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The LUNA16 dataset is available at:https://luna16.grand-challenge.org/Data/. The Tianchi dataset is available at:https://tianchi.aliyun.com/competition/entrance/231601/information. The X-Nodule dataset is available at:https://universe.roboflow.com/rodney/hhhh-ig2qf.

Notes

  1. link:https://tianchi.aliyun.com/competition/entrance/231601/information.

  2. link:https://universe. roboflow.com/rodney/hhhh-ig2qf.

  3. link:https://tianchi.aliyun.com/competition/entrance/231601/information.

  4. link:https://universe. roboflow.com/rodney/hhhh-ig2qf.

References

  1. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A., et al.: Cancer statistics, 2021. CA Cancer J. Clin. 71(1), 7–33 (2021)

    Article  Google Scholar 

  2. Gansler, T., Ganz, P.A., Grant, M., Greene, F.L., Johnstone, P., Mahoney, M., Newman, L.A., Oh, W.K., Thomas, C.R., Jr., Thun, M.J., et al.: Sixty years of ca: a cancer journal for clinicians. CA Cancer J. Clin. 60(6), 345–350 (2010)

    Article  Google Scholar 

  3. Osarogiagbon, R.U., Liao, W., Faris, N.R., Fehnel, C., Goss, J., Shepherd, C.J., Qureshi, T., Matthews, A.T., Smeltzer, M.P., Pinsky, P.F.: Evaluation of lung cancer risk among persons undergoing screening or guideline-concordant monitoring of lung nodules in the mississippi delta. JAMA Netw. Open 6(2), 230787–230787 (2023)

    Article  Google Scholar 

  4. Lee, J.H., Hong, H., Nam, G., Hwang, E.J., Park, C.M.: Effect of human-ai interaction on detection of malignant lung nodules on chest radiographs. Radiology 307(5), 222976 (2023)

    Article  Google Scholar 

  5. Song, J., Huang, S.-C., Kelly, B., Liao, G., Shi, J., Wu, N., Li, W., Liu, Z., Cui, L., Lungre, M.P., et al.: Automatic lung nodule segmentation and intra-nodular heterogeneity image generation. IEEE J. Biomed. Health Inform. 26(6), 2570–2581 (2021)

    Article  Google Scholar 

  6. Alshayeji, M.H., Abed, S.: Lung cancer classification and identification framework with automatic nodule segmentation screening using machine learning. Appl Intell. 53(16), 19724–19741 (2023)

    Article  Google Scholar 

  7. Ahmed, I., Chehri, A., Jeon, G., Piccialli, F.: Automated pulmonary nodule classification and detection using deep learning architectures. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2022)

  8. Gu, Y., Chi, J., Liu, J., Yang, L., Zhang, B., Yu, D., Zhao, Y., Lu, X.: A survey of computer-aided diagnosis of lung nodules from ct scans using deep learning. Comput. Biol. Med. 137, 104806 (2021)

    Article  Google Scholar 

  9. Kaulgud, R.V., Patil, A.: Analysis based on machine and deep learning techniques for the accurate detection of lung nodules from ct images. Biomed. Signal Process. Control 85, 105055 (2023)

    Article  Google Scholar 

  10. Li, R., Xiao, C., Huang, Y., Hassan, H., Huang, B.: Deep learning applications in computed tomography images for pulmonary nodule detection and diagnosis: a review. Diagnostics 12(2), 298 (2022)

    Article  Google Scholar 

  11. Manickavasagam, R., Selvan, S., Selvan, M.: Cad system for lung nodule detection using deep learning with CNN. Med Biol Eng Comput 60(1), 221–228 (2022)

    Article  Google Scholar 

  12. Misumi, Y., Nonaka, K., Takeuchi, M., Kamitani, Y., Uechi, Y., Watanabe, M., Kishino, M., Omori, T., Yonezawa, M., Isomoto, H., et al.: Comparison of the ability of artificial-intelligence-based computer-aided detection (cad) systems and endoscopists to detect colorectal neoplastic lesions on endoscopy video. J. Clin. Med. 12(14), 4840 (2023)

    Article  Google Scholar 

  13. Shuvo, S.B.: An automated end-to-end deep learning-based framework for lung cancer diagnosis by detecting and classifying the lung nodules. arXiv preprint arXiv:2305.00046 (2023). Accessed 1 Dec 2023

  14. Mkindu, H., Wu, L., Zhao, Y.: Lung nodule detection in chest ct images based on vision transformer network with bayesian optimization. Biomed. Signal Process. Control 85, 104866 (2023)

    Article  Google Scholar 

  15. Mei, J., Cheng, M.-M., Xu, G., Wan, L.-R., Zhang, H.: Sanet: a slice-aware network for pulmonary nodule detection. IEEE Trans. Pattern Anal. Mach. Intell. 44(8), 4374–4387 (2021)

    Google Scholar 

  16. Xu, J., Ren, H., Cai, S., Zhang, X.: An improved faster R-CNN algorithm for assisted detection of lung nodules. Comput Biol Med 153, 106470 (2023)

    Article  Google Scholar 

  17. Ji, Z., Wu, Y., Zeng, X., An, Y., Zhao, L., Wang, Z., Ganchev, I.: Lung nodule detection in medical images based on improved yolov5s. IEEE Access (2023)

  18. Lu, X., Zeng, N., Wang, X., Huang, J., Hu, Y., Fang, J., Liu, J.: Ffnet: an end-to-end framework based on feature pyramid network and filter network for pulmonary nodule detection. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–6 (2023). IEEE

  19. Chi, J., Zhao, J., Wang, S., Yu, X., Wu, C.: Lgdnet: local feature coupling global representations network for pulmonary nodules detection. Med Biol Eng Comput. pp 1–14 (2024)

  20. Shakarami, A., Menhaj, M.B., Mahdavi-Hormat, A., Tarrah, H.: A fast and yet efficient yolov3 for blood cell detection. Biomed. Signal Process. Control 66, 102495 (2021)

    Article  Google Scholar 

  21. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

  22. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: Ssd: Single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp. 21–37 (2016). Springer, New York

  23. Zlocha, M., Dou, Q., Glocker, B.: Improving retinanet for ct lesion detection with dense masks from weak recist labels. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part VI 22, pp. 402–410 (2019). Springer, New York.

  24. Harsono, I.W., Liawatimena, S., Cenggoro, T.W.: Lung nodule detection and classification from thorax CT-scan using retinanet with transfer learning. J King Saud Univ Comput Inf Sci 34(3), 567–577 (2022)

    Google Scholar 

  25. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

  26. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9759–9768 (2020)

  27. Wang, N., Gao, Y., Chen, H., Wang, P., Tian, Z., Shen, C., Zhang, Y.: Nas-fcos: Fast neural architecture search for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11943–11951 (2020)

  28. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

  29. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra r-cnn: Towards balanced learning for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 821–830 (2019)

  30. Lu, X., Li, B., Yue, Y., Li, Q., Yan, J.: Grid r-cnn. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7363–7372 (2019)

  31. Cai, Z., Vasconcelos, N.: Cascade r-cnn: Delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

  32. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020). Accessed 15 Oct 2023

  33. Xu, Z., Zhang, X., Zhang, H., Liu, Y., Zhan, Y., Lukasiewicz, T.: Efpn: effective medical image detection using feature pyramid fusion enhancement. Comput Biol Med. 163, 107149 (2023)

    Article  Google Scholar 

  34. Huang, Y.-S., Chou, P.-R., Chen, H.-M., Chang, Y.-C., Chang, R.-F.: One-stage pulmonary nodule detection using 3-d DCNN with feature fusion and attention mechanism in CT image. Comput. Methods Programs Biomed. 220, 106786 (2022)

    Article  Google Scholar 

  35. Jiang, H., Diao, Z., Shi, T., Zhou, Y., Wang, F., Hu, W., Zhu, X., Luo, S., Tong, G., Yao, Y.-D.: A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation. Comput Biol Med. 157, 106726 (2023)

    Article  Google Scholar 

  36. Zhang, H., Xu, Z., Yao, D., Zhang, S., Chen, J., Lukasiewicz, T.: Multi-head feature pyramid networks for breast mass detection. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5 (2023). IEEE

  37. Celard, P., Iglesias, E., Sorribes-Fdez, J., Romero, R., Vieira, A.S., Borrajo, L.: A survey on deep learning applied to medical images: from simple artificial neural networks to generative models. Neural Comput. Appl. 35(3), 2291–2323 (2023)

    Article  Google Scholar 

  38. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

  39. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

  40. Tan, M., Pang, R., Le, Q.V.: Efficientdet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

  41. Luo, Y., Cao, X., Zhang, J., Guo, J., Shen, H., Wang, T., Feng, Q.: CE-FPN: enhancing channel information for object detection. Multimed Tools Appl 81(21), 30685–30704 (2022)

    Article  Google Scholar 

  42. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

  43. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

  44. Setio, A.A.A., Traverso, A., De Bel, T., Berens, M.S., Van Den Bogaard, C., Cerello, P., Chen, H., Dou, Q., Fantacci, M.E., Geurts, B., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Article  Google Scholar 

  45. Jacobs, C., Rikxoort, E.M., Murphy, K., Prokop, M., Schaefer-Prokop, C.M., Ginneken, B.: Computer-aided detection of pulmonary nodules: a comparative study using the public lidc/idri database. Eur. Radiol. 26, 2139–2147 (2016)

    Article  Google Scholar 

  46. Min, K., Lee, G.-H., Lee, S.-W.: Attentional feature pyramid network for small object detection. Neural Netw. 155, 439–450 (2022)

    Article  Google Scholar 

  47. Egan, J.P., Greenberg, G.Z., Schulman, A.I.: Operating characteristics, signal detectability, and the method of free response. J Acoust Soc Am 33(8), 993–1007 (1961)

    Article  Google Scholar 

  48. Zhu, W., Liu, C., Fan, W., Xie, X.: Deeplung: Deep 3d dual path nets for automated pulmonary nodule detection and classification. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 673–681 (2018). IEEE

  49. Xie, H., Yang, D., Sun, N., Chen, Z., Zhang, Y.: Automated pulmonary nodule detection in ct images using deep convolutional neural networks. Pattern Recogn. 85, 109–119 (2019)

    Article  Google Scholar 

  50. Li, Y., Fan, Y.: Deepseed: 3d squeeze-and-excitation encoder-decoder convolutional neural networks for pulmonary nodule detection. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1866–1869 (2020). IEEE

  51. Zhou, Z., Gou, F., Tan, Y., Wu, J.: A cascaded multi-stage framework for automatic detection and segmentation of pulmonary nodules in developing countries. IEEE J. Biomed. Health Inform. 26(11), 5619–5630 (2022)

    Article  Google Scholar 

  52. Nguyen, T.-C., Nguyen, T.-P., Cao, T., Dao, T.T.P., Ho, T.-N., Nguyen, T.V., Tran, M.-T.: Manet: multi-branch attention auxiliary learning for lung nodule detection and segmentation. Comput. Methods Programs Biomed. 241, 107748 (2023)

    Article  Google Scholar 

  53. Yousaf, F., Iqbal, S., Fatima, N., Kousar, T., Rahim, M.S.M.: Multi-class disease detection using deep learning and human brain medical imaging. Biomed. Signal Process. Control 85, 104875 (2023)

    Article  Google Scholar 

  54. Wang, G., Luo, X., Gu, R., Yang, S., Qu, Y., Zhai, S., Zhao, Q., Li, K., Zhang, S.: Pymic: a deep learning toolkit for annotation-efficient medical image segmentation. Comput. Methods Programs Biomed. 231, 107398 (2023)

    Article  Google Scholar 

  55. Zhang, S., Zhang, J., Tian, B., Lukasiewicz, T., Xu, Z.: Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medical image segmentation. Med. Image Anal. 83, 102656 (2023)

    Article  Google Scholar 

  56. Li, W., Zhang, Y., Wang, G., Huang, Y., Li, R.: Dfenet: a dual-branch feature enhanced network integrating transformers and convolutional feature learning for multimodal medical image fusion. Biomed. Signal Process. Control 80, 104402 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51877069) and the Natural Science Foundation of Hebei Province(Grant No. E2021202184).

Author information

Authors and Affiliations

Authors

Contributions

Haochen Zhang:writing—review & editing, writing—original draft, software, methodology, investigation, conceptualization, data curation. Shuai Zhang:writing—review & editing, supervision, funding acquisition, software, resources, project administration. Lipeng Xing:supervision, visualization, data curation. Qingzhao Wang:writing— review & editing, supervision. Ruiyang Fan:writing— review & editing, supervision.

Corresponding author

Correspondence to Shuai Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, S., Xing, L. et al. Expressive feature representation pyramid network for pulmonary nodule detection. Multimedia Systems 30, 328 (2024). https://doi.org/10.1007/s00530-024-01532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-024-01532-4

Keywords

Navigation