Abstract
Text-based person search endeavors to utilize natural language descriptions for retrieving pedestrian images. Previous studies have primarily focused on leveraging information among pedestrians with distinct identities, overlooking the exploration of data variations within the same identity. Although some have attempted to extract multiple samples for each identity, an appropriate loss function was not employed. In response to this research gap, we present LFSA, a concise cross-model framework that Learns shared Features from Specific and Ambiguous descriptions. Firstly, building upon a distinctive sampling strategy, we formulate the Boundary Constraints Loss (BCL) and the Hard Sample Mining Loss (HSML) with the aim of extracting unique features from specific descriptions while simultaneously capturing shared features from ambiguous descriptions. Then, we introduce a textual augmentation module denoted as Mask-Delete-Replace (MDR). This module employs three operations to direct the model’s attention toward more comprehensive details within the textual descriptors. LFSA utilizes CLIP as the backbone of the network, only leveraging its global features from the [CLS] token. Extensive experiments on two benchmark datasets, CUHK-PEDES and ICFG-PEDES, demonstrate the effectiveness of our approach. Codes are available at https://github.com/CottonCandyZ/LFSA.
Similar content being viewed by others
Data availability
Not available.
References
Li, S., Xiao, T., Li, H., Zhou, B., Yue, D., Wang, X.: Person search with natural language description. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5187–5196. IEEE, Honolulu, HI (2017). https://doi.org/10.1109/CVPR.2017.551
Wang, Y., Jiang, K., Lu, H., Xu, Z., Li, G., Chen, C., Geng, X.: Encoder-decoder assisted image generation for person re-identification. Multim. Tools Appl. 81(7), 10373–10390 (2022). https://doi.org/10.1007/s11042-022-11907-2
Zhu, Z., Jiang, X., Zheng, F., Guo, X., Huang, F., Sun, X., Zheng, W.: Viewpoint-aware loss with angular regularization for person re-identification. Proc. AAAI Conf Artif. Intell. 34(07), 13114–13121 (2020). https://doi.org/10.1609/aaai.v34i07.7014
Wang, Y., Zhang, P., Gao, S., Geng, X., Lu, H., Wang, D.: Pyramid spatial-temporal aggregation for video-based person re-identification. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12006–12015 (2021). https://doi.org/10.1109/ICCV48922.2021.01181
Lu, H., Zou, X., Zhang, P.: Learning progressive modality-shared transformers for effective visible-infrared person re-identification. Proc. AAAI Conf. Artif. Intell. 37(2), 1835–1843 (2023). https://doi.org/10.1609/aaai.v37i2.25273
Han, X., He, S., Zhang, L., Xiang, T.: Text-based person search with limited data. In: BMVC (2021)
Yang, S., Zhou, Y., Zheng, Z., Wang, Y., Zhu, L., Wu, Y.: Toward unified text-based person retrieval: a large-scale multi-attribute and language search benchmark. In: Proceedings of the 31st ACM International Conference on Multimedia. MM ’23, pp. 4492–4501. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3581783.3611709
Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.H.: Deep learning for person re-identification: a survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 2872–2893 (2022). https://doi.org/10.1109/TPAMI.2021.3054775
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A Simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, pp. 1597–1607. PMLR, ??? (2020)
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., ??? (2017)
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423
Chen, Y., Zhang, G., Lu, Y., Wang, Z., Zheng, Y.: TIPCB: a simple but effective part-based convolutional baseline for text-based person search. Neurocomputing 494, 171–181 (2022). https://doi.org/10.1016/j.neucom.2022.04.081
Wang, Z., Fang, Z., Wang, J., Yang, Y.: ViTAA: Visual-Textual attributes alignment in person search by natural language. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020 vol. 12357, pp. 402–420. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_24
Wang, Z., Zhu, A., Xue, J., Wan, X., Liu, C., Wang, T., Li, Y.: CAIBC: capturing all-round information beyond color for text-based person retrieval. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5314–5322 (2022). https://doi.org/10.1145/3503161.3548057
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=YicbFdNTTy
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992–10002. IEEE, Montreal, QC, Canada (2021). https://doi.org/10.1109/ICCV48922.2021.00986
Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., Lu, T., Luo, P., Shao, L.: PVT v2: improved baselines with pyramid vision transformer. Comput. Visual Media 8(3), 415–424 (2022). https://doi.org/10.1007/s41095-022-0274-8
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using rnn encoder–decoder for statistical machine translation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734. Association for Computational Linguistics, Doha, Qatar (2014). https://doi.org/10.3115/v1/D14-1179
Shu, X., Wen, W., Wu, H., Chen, K., Song, Y., Qiao, R., Ren, B., Wang, X.: See Finer, see more: implicit modality alignment for text-based person retrieval. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision–ECCV 2022 Workshops. Lecture Notes in Computer Science, pp. 624–641. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-25072-9_42
Ji, Z., Hu, J., Liu, D., Wu, L.Y., Zhao, Y.: Asymmetric cross-scale alignment for text-based person search. IEEE Trans. Multim. (2022). https://doi.org/10.1109/TMM.2022.3225754
Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning Transferable Visual Models From Natural Language Supervision. In: Proceedings of the 38th International Conference on Machine Learning, pp. 8748–8763. PMLR, ??? (2021)
Dou, Z.-Y., Xu, Y., Gan, Z., Wang, J., Wang, S., Wang, L., Zhu, C., Zhang, P., Yuan, L., Peng, N., Liu, Z., Zeng, M.: An Empirical Study of Training End-to-End Vision-and-Language Transformers. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18145–18155. IEEE, New Orleans, LA, USA (2022). https://doi.org/10.1109/CVPR52688.2022.01763
Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hoi, S.C.H.: Align before Fuse: Vision and Language Representation Learning with Momentum Distillation. In: Advances in Neural Information Processing Systems, vol. 34, pp. 9694–9705. Curran Associates, Inc., ??? (2021)
Bai, Y., Cao, M., Gao, D., Cao, Z., Chen, C., Fan, Z., Nie, L., Zhang, M.: Rasa: Relation and sensitivity aware representation learning for text-based person search. arXiv preprint arXiv:2305.13653 (2023)
Jiang, D., Ye, M.: Cross-modal implicit relation reasoning and aligning for text-to-image person retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2787–2797 (2023)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations (ICLR 2015) (2015)
Zhang, Y., Lu, H.: Deep Cross-Modal Projection Learning for Image-Text Matching. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018 vol. 11205, pp. 707–723. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_42
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv (2017). https://doi.org/10.48550/arXiv.1704.04861
Zheng, Z., Zheng, L., Garrett, M., Yang, Y., Xu, M., Shen, Y.-D.: Dual-path convolutional image-text embeddings with instance loss. ACM Trans. Multim. Comput. Commun. Appl.16(2), 1–23 (2020) https://doi.org/10.1145/3383184arxiv:1711.05535 [cs]
Hu Lu, TingTing Jin, Hui Wei, Michele Nappi, Hu Li, ShaoHua Wan.: Soft-orthogonal constrained dual-stream encoder with self-supervised clustering network for brain functional connectivity data, Expert Systems with Applications, 244, 122898 (2023). https://doi.org/10.1016/j.eswa.2023.122898
Farooq, A., Awais, M., Kittler, J., Khalid, S.S.: AXM-Net: implicit cross-modal feature alignment for person re-identification. Proc. AAAI Conf. Artif. Intell. 36(4), 4477–4485 (2022). https://doi.org/10.1609/aaai.v36i4.20370
Gao, C., Cai, G., Jiang, X., Zheng, F., Zhang, J., Gong, Y., Lin, F., Sun, X., Bai, X.: Conditional feature learning based transformer for text-based person search. IEEE Trans. Image Process. 31, 6097–6108 (2022). https://doi.org/10.1109/TIP.2022.3205216
Li, S., Lu, A., Huang, Y., Li, C., Wang, L.: Joint token and feature alignment framework for text-based person search. IEEE Signal Process. Lett. 29, 2238–2242 (2022). https://doi.org/10.1109/LSP.2022.3217682
Li, F., Zhou, H., Li, H., Zhang, Y., Yu, Z.: Person text-image matching via text-feature interpretability embedding and external attack node implantation. arXiv (2022)
Yan, S., Dong, N., Zhang, L., Tang, J.: CLIP-Driven Fine-grained Text-Image Person Re-identification. arXiv (2022)
Ding, Z., Ding, C., Shao, Z., Tao, D.: Semantically Self-Aligned Network for Text-to-Image Part-aware Person Re-identification. arXiv (2021). https://doi.org/10.48550/arXiv.2107.12666
Gao, C., Cai, G., Jiang, X., Zheng, F., Zhang, J., Gong, Y., Peng, P., Guo, X., Sun, X.: Contextual non-local alignment over full-scale representation for text-based person search. arXiv (2021)
Zhu, A., Wang, Z., Li, Y., Wan, X., Jin, J., Wang, T., Hu, F., Hua, G.: DSSL: Deep surroundings-person separation learning for text-based person retrieval. In: Proceedings of the 29th ACM International Conference on Multimedia. MM ’21, pp. 209–217. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3474085.3475369
Yan, S., Tang, H., Zhang, L., Tang, J.: Image-Specific Information Suppression and Implicit Local Alignment for Text-based Person Search. arXiv (2023). https://doi.org/10.48550/arXiv.2208.14365
Li, S., Cao, M., Zhang, M.: Learning semantic-aligned feature representation for text-based person search. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2724–2728 (2022). https://doi.org/10.1109/ICASSP43922.2022.9746846
Suo, W., Sun, M., Niu, K., Gao, Y., Wang, P., Zhang, Y., Wu, Q.: A simple and robust correlation filtering method for text-based person search. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022 vol. 13695, pp. 726–742. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_42
Shao, Z., Zhang, X., Fang, M., Lin, Z., Wang, J., Ding, C.: Learning Granularity-Unified Representations for Text-to-Image Person Re-identification. In: Proceedings of the 30th ACM International Conference on Multimedia. MM ’22, pp. 5566–5574. Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3503161.3548028
Wang, G., Yu, F., Li, J., Jia, Q., Ding, S.: Exploiting the textual potential from vision-language pre-training for text-based person search. arXiv (2023)
He, Ziqiang, Shaohua Wan, Marco Zappatore, Hu Lu.: A similarity matrix low-rank approximation and inconsistency separation Fusion Approach for Multi-view Clustering. IEEE Transactions on Artificial Intelligence (2023). https://doi.org/10.1109/TAI.2023.3271964
Acknowledgement
This work was supported in part by the NationalScience Foundation Program of China (NSFC) (grant number: 61976241), and the InternationalScience and technology cooperation plan project of Zhenjiang (grant number: GJ2021008).
Author information
Authors and Affiliations
Contributions
Qikai Geng and Hu Lu wrote the main manuscript text and Juanjuan Tu prepared figures. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest. No funds, grants, or other support was received.
Additional information
Communicated by B. Bao.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cheng, K., Geng, Q., Huang, S. et al. Learning shared features from specific and ambiguous descriptions for text-based person search. Multimedia Systems 30, 94 (2024). https://doi.org/10.1007/s00530-024-01286-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00530-024-01286-z