[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

DwiMark: a multiscale robust deep watermarking framework for diffusion-weighted imaging images

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

To prevent diffusion-weighted imaging (DWI) images from being illegally used or maliciously attacked during the transmission of a remote diagnosis, the copyright of DWI images urgently needs to be protected. In this paper, an end-to-end robust deep watermarking framework is proposed for DWI images, which combines a generative adversarial structure with multiscale features. First, the DWI images are reconstructed by connecting full-scale features to make the fibers and texture highly similar to the original DWI images. Watermarks are also embedded into the multiscale reconstructed features. Then, an optimized BEGAN discriminator is proposed to improve the convergence speed and the visual quality of the reconstructed image. Finally, pyramid filters and multiscale max-pooling are applied to fully learn the watermark distribution features. The experiments show that the proposed framework achieves higher watermark robustness under various common image distortions. Specifically, for rotation and dropout, the robustness can compete with traditional methods. The average PSNR of watermarked DWI images is 58.69 dB, and the diffusion features change indistinguishably, which can effectively protect them without affecting a doctor’s diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Khoo Michael M. Y., Tyler Philippa A.: Asif Saifuddin, and Anwar R. Padhani. Diffusion-weighted imaging (dwi) in musculoskeletal mri: a critical review. Skeletal Radiology, 40(6):665–681, (2011)

  2. Amoroso, N.: Diffusion-weighted imaging (dwi) tractography and alzheimer’s disease. Diagnosis and Management in Dementia, pages 313–325, (2020)

  3. Cai, J.-S., Chen, H.-Y., Chen, J.-Y., Lu, Y.-F., Sun, J.-Z., Zhou, Y., Yu, R-.S.: Reduced field-of-view diffusion-weighted imaging (dwi) in patients with gastric cancer: comparison with conventional dwi techniques at 3.0t: a preliminary study. Medicine, 99(1), (2020)

  4. Schönfeld, M.H., Kabiri, R., Kniep, H.C., Meyer, L., Sedlacik, J.: Sub-angiographic peripheral emboli in high resolution dwi after endovascular recanalization. J Neurol 267, 1401–1406 (2020)

    Article  Google Scholar 

  5. Abdel-Nabi, H., Al-Haj, A.: Reversible data hiding in adjacent zeros. Multimedia Systems, pages 1–17, (2021)

  6. Bhatnagar, G., Wu, Q. M.: Enhancing the transmission security of biometric images using chaotic encryption. Multimedia Systems, 20(2):203–214, (2014)

  7. Gao, G., Tong, S., Xia, Z., Bin, W., Liya, X., Zhao, Z.: Reversible data hiding with automatic contrast enhancement for medical images. Signal Process. 178, 107817 (2021)

    Article  Google Scholar 

  8. Yang, Y., Xiao, X., Cai, X., Zhang, W.: A secure and privacy-preserving technique based on contrast-enhancement reversible data hiding and plaintext encryption for medical images. IEEE Signal Process. Lett. 27, 256–260 (2020)

    Article  Google Scholar 

  9. Bhardwaj, R., and Aggarwal, A.: Hiding clinical information in medical images: an enhanced encrypted reversible data hiding algorithm grounded on hierarchical absolute moment block truncation coding. Multidimensional Syst. Signal Process., 31:1051–1074, 7 (2020)

  10. Showkat, S., Parah, S. A., Gull, S.: Embedding in medical images with contrast enhancement and tamper detection capability. Multimedia Tools Appl. (2020)

  11. Swaraja, K., Meenakshi, K., Padmavathi, K.: An optimized blind dual medical image watermarking framework for tamper localization and content authentication in secured telemedicine. Biomed. Signal Process. Control 55, 10166 (2020)

    Google Scholar 

  12. Chen, Y., Li, Z., Zhang, J., Wang, G.M.: Robust watermarking algorithm for diffusion-weighted images (dwi). Chin. J. Image Graph. pages 24(09), 1434–1449 (2019)

    Google Scholar 

  13. Thakur, S., Singh, A. K., Ghrera, S. P., and Mohan, A.: Chaotic based secure watermarking approach for medical images. Multimedia Tools Appl., 79:4263–4276, 2 (2020)

  14. Liu, X., Lou, J., Fang, H., Chen, Y., Ouyang, P., Wang, Y., Zou, B., Wang, L.: A novel robust reversible watermarking scheme for protecting authenticity and integrity of medical images. IEEE Access 7, 76580–76598 (2019)

    Article  Google Scholar 

  15. Ashima Anand and Amit Kumar Singh: An improved dwt-svd domain watermarking for medical information security. Comput. Commun. 152, 72–80 (2020)

    Article  Google Scholar 

  16. Khare, P., and Srivastava, V. K.: A secured and robust medical image watermarking approach for protecting integrity of medical images. Trans. Emerging Telecommun. Technol., (2020)

  17. Balasamy, K., Suganyadevi, S.: A fuzzy based roi selection for encryption and watermarking in medical image using dwt and svd. Multimedia Tools Appl. (2020)

  18. Swaraja ,K.: Medical image region based watermarking for secured telemedicine. Multimedia Tools Appl., 77:28249–28280, 11 (2018)

  19. Zhu, J., Kaplan, R., Johnson, J., and Fei-Fei, L. .: Hidden: Hiding data with deep networks. 7 (2018)

  20. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.: Generative adversarial networks. arXiv preprint arXiv:1406.2661, (2014)

  21. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z et al.: Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4681–4690, (2017)

  22. Tian, Chunwei, Fei, Lunke, Zheng, Wenxian, Yong, Xu., Zuo, Wangmeng, Lin, Chia-Wen.: Deep learning on image denoising: an overview. Neural Netw. 131, 251–275 (2020)

    Article  Google Scholar 

  23. Wang, Chengjia, Yang, Guang, Papanastasiou, Giorgos, Tsaftaris, Sotirios A., Newby, David E., Gray, Calum, Macnaught, Gillian, MacGillivray, Tom J.: Dicyc: Gan-based deformation invariant cross-domain information fusion for medical image synthesis. Inform. Fus. 67, 147–160 (2021)

    Article  Google Scholar 

  24. Yao, Shuaizhen, Tan, Jianhua, Chen, Yi., Yanhui, Gu.: A weighted feature transfer gan for medical image synthesis. Mach. Vis. Appl. 32, 1–11 (2021)

    Article  Google Scholar 

  25. Kazeminia, S., Baur, C., Kuijper, A., van Ginneken, B., Navab, N., Albarqouni, S., and Mukhopadhyay, A.: Gans for medical image analysis. Artificial Intell. Med., page 101938, (2020)

  26. Zhang, P., Wang, F., Xu, W., and Li, Y.: Multi-channel generative adversarial network for parallel magnetic resonance image reconstruction in k-space. In Alejandro F. Frangi, Julia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, and Gabor Fichtinger, editors, Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, pages 180–188, Cham, (2018). Springer International Publishing

  27. Han, C., Hayashi, H., Rundo, L., Araki, R., Shimoda, W., Muramatsu, S., Furukawa, Y., Mauri, G., and Nakayama, H.: Gan-based synthetic brain mr image generation. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), pages 734–738, (2018)

  28. Radford, A., Metz, L., and Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. Computer ence, (2015)

  29. Arjovsky, M., Chintala, S., and Bottou, L.: Wasserstein gan. (2017)

  30. Mao, X., Li, Q., Xie, H., Lau, Ryk., and Smolley, S. P.: Least squares generative adversarial networks. In 2017 IEEE international conference on computer vision (ICCV), (2017)

  31. Berthelot, D., Schumm, T., and Metz, L.: Began: boundary equilibrium generative adversarial networks. 3 (2017)

  32. Kodali, N., Abernethy, J., Hays, J., and Kira, Z.: On convergence and stability of gans. (2017)

  33. Choi, Y., Uh, Y., Yoo, J., and Ha, J. W.: Stargan v2: Diverse image synthesis for multiple domains. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020)

  34. Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J.: Unrolled generative adversarial networks. (2016)

  35. Liu, Y., Guo, M., Zhang, J., Zhu, Y., and Xie, X.: A novel two-stage separable deep learning framework for practical blind watermarking. In Proceedings of the 27th ACM International Conference on Multimedia, pages 1509–1517, (2019)

  36. Ahmadi, M, Norouzi, A, Karimi, N, Samavi, S, Emami, A: Redmark: framework for residual diffusion watermarking based on deep networks. Expert Systems with Applications 146, 113157 (2020)

  37. Xiyang, L., Ruohan, Z., Huiwen, C., Feng, Y., and Peyman, M. Distortion agnostic deep watermarking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), June 2020

  38. Mun, S-M., Nam, S-H., Jang, H-U., Kim, D., and Lee, H-K.: A robust blind watermarking using convolutional neural network. arXiv preprint arXiv:1704.03248, (2017)

  39. Zhang, K. A., Xu, L., Cuesta-Infante, A., and Veeramachaneni, K.: Robust invisible video watermarking with attention. arXiv preprint arXiv:1909.01285, (2019)

  40. Hahn, E.L.: Nuclear induction due to free larmor precession. Phys. Rev. 77, 297–298 (1950)

    Article  Google Scholar 

  41. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965)

    Article  Google Scholar 

  42. Le Bihan, Denis, Mangin, Jean-François., Poupon, Cyril: Chris A Clark, Sabina Pappata, Nicolas Molko, and Hughes Chabriat. Concepts and applications, Diffusion tensor imaging (2001)

  43. Yan, C., Li, Z., Zhang, Y., Liu, Y., Ji, X., and Zhang, Y.: Depth image denoising using nuclear norm and learning graph model. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 16(4):1–17, (2020)

  44. Han, Y., Yoo, J. J., and Ye, J. C.: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis. CoRR, abs/1611.06391, (2016)

  45. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017)

    Article  MathSciNet  Google Scholar 

  46. Kumar, K., Shrimankar, D. D., and Singh, N.: Eratosthenes sieve based key-frame extraction technique for event summarization in videos. Multimedia Tools Appl, (2017)

  47. Vijayvergia, A., and Kumar, K.: Star: rating of reviews by exploiting variation in emotions using transfer learning framework. In 2018 conference on information and communication technology (CICT), (2018)

  48. Solanki, A., Bamrara, R., Kumar, K., and Singh, N.: Vedl: a novel video event searching technique using deep learning. perspective, 2(4):6–8

  49. Yan, .C, Gong, B., Wei, Y., Gao, Y.: Deep multi-view enhancement hashing for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

  50. Kumar, Krishan., and Shrimankar, Deepti D.: F-des: Fast and deep event summarization. IEEE Transactions on Multimedia, 20(2):323–334, (2017)

  51. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  52. Liu, J.-J., Hou, Q., Cheng, M.-M., Feng, J., and Jiang, J.: A simple pooling-based design for real-time salient object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), June (2019)

  53. Huang, N., He, J., and Zhu, N.: A novel method for detecting image forgery based on convolutional neural network. In 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pages 1702–1705, (2018)

  54. Ghodrati, V., Shao, J., Bydder, M., Zhou, Z., Yin, W., Nguyen, K. L. Yang, Y., Hu, P. Mr image reconstruction using deep learning. Quantitative Imaging Med. Surg. 9, 1516–1527 (2019)

  55. Simonyan, K., and Zisserman, A.: Very deep convolutional networks for large-scale image recognition. 9 (2014)

  56. Yu, F., and Koltun, V.: Multi-Scale Context Aggregation by Dilated Convolutions. arXiv e-prints, page arXiv:1511.07122, November (2015)

  57. Tian, Chunwei, Yong, Xu., Zuo, Wangmeng, Zhang, Bob, Fei, Lunke, Lin, Chia-Wen.: Coarse-to-fine cnn for image super-resolution. IEEE Trans. Multimedia 23, 1489–1502 (2021)

    Article  Google Scholar 

  58. Tian, C, Zhuge, R., Zhihao, W., Yong, X., Zuo, W., Chen, C., Lin, C.-W.: Lightweight image super-resolution with enhanced cnn. Knowl.-Based Syst. 205, 106235 (2020)

  59. Tong, Qiqi, He, Hongjian, Gong, Ting, Li, Chen, Liang, Peipeng, Qian, Tianyi, Sun, Yi., Ding, Qiuping, Li, Kuncheng, Zhong, Jianhui: Multicenter dataset of multi-shell diffusion mri in healthy traveling adults with identical settings. Sci. Data 7(1), 157 (2020)

    Article  Google Scholar 

  60. He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

  61. Kumar, K., Kumar, A., and Bahuguna, A.: D-cad: Deep and crowded anomaly detection. In Proceedings of the 7th International Conference on Computer and Communication Technology, pages 100–105, (2017)

  62. Negi, A., Chauhan, P., Kumar, K., and Rajput, R. S.: Face mask detection classifier and model pruning with keras-surgeon. In 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), pages 1–6. IEEE, (2020)

  63. Yan, Chenggang, Shao, Biyao, Zhao, Hao, Ning, Ruixin, Zhang, Yongdong, Feng, Xu.: 3d room layout estimation from a single rgb image. IEEE Trans. Multimedia 22(11), 3014–3024 (2020)

    Article  Google Scholar 

  64. Koppanati, R. K., Qamar, S., and Kumar, K.: Small: Secure multimedia technique using logistic and lfsr. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), pages 1820–1825. IEEE, (2018)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62062023, and Guizhou Science and Technology Plan Project under Grant ZK[2021]-YB314.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li.

Additional information

Communicated by C. Yan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, B., Li, Z. & Gao, J. DwiMark: a multiscale robust deep watermarking framework for diffusion-weighted imaging images. Multimedia Systems 28, 295–310 (2022). https://doi.org/10.1007/s00530-021-00835-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-021-00835-0

Keywords

Navigation