Abstract
The subspace tree is an indexing method for large multi-media databases. The search in such a tree starts at the subspace with the lowest dimension. In this subspace, the set of all possible similar images is determined. In the next subspace, additional metric information corresponding to a higher dimension is used to reduce this set. We compare theoretically and empirically data-dependent mappings into subspaces (principal component analysis) with data-independent mapping (averaging). The empirical experiments are performed on an image collection of 30,000 images.
Similar content being viewed by others
References
Andoni, A., Dater, M., Indyk, P., Immorlica, N., Mirrokni, V.: Locality-sensitive hashing using stable distributions. In: Darrell, T., Indyk, P., Shakhnarovich, G. (eds.) Nearest Neighbor Methods in Learning and Vision: Theory and Practice, chap. 4, MIT-Press, Cambridge (2006)
Baeza-Yates, R., Ribeiro-Neto, B.: Modeling. In: Baeza-Yates, R., Ribeiro-Neto, B. (eds.) Modern Information Retrieval. chap. 2, pp. 19–71. Addison-Wesley, (1999)
Blei, D.M., Jordan, M.I.: Modeling annotated data. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, pp. 127–134 (2003)
Böhm, C., Berchtold, S., Kei, D., A.K.: Searching in high-dimensional spaces—index structures for improving the performance of multimedia databases. ACM Computing Surveys, 33(3), 322–373 (2001)
Burt, P.J., Adelson, E.H.: The laplacian pyramidas a compact image code. IEEE Trans. Commun. COM-31(4), 532–540 (1983)
Chen, Y., Wang, J.Z.: Image categorization by learning and reasoning with regions. J. Mach. Learn. Res.5, 913–939 (2004)
Ciaccia, P., Patella, M.: Searching in metric spaces with user-defined and approximate distances. ACM Trans. Database Syst. 27(4), 398–437 (2002)
de Sá, J.P.M.: Pattern Recognition: Concepts, Methods and Applications. Springer, Heidelberg (2001)
Dunckley, L.: Multimedia Databases, An Object-Rational Approach. Addison Wesley, USA (2003)
Faloutsos, C.: Modern information retrieval. In: Baeza-Yates, R., Ribeiro-Neto, B. (eds.) Modern Information Retrieval, chap. 12, pp. 345–365. Addison-Wesley, Reading (1999)
Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equitz, W.: Efficient and effective querying by image content. J. Intell. Inf. Syst. 3(3/4), 231–262 (1994)
Flickner, M., Sawhney, H., Niblck, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content the QBIC system. In: IEEE Computer, pp. 23–32 (1995)
Fonseca, M.J., Jorge, J.A.: Indexing high-dimensional data for content-based retrieval in large databases. In: Proceedings of the 8th International Conference on Database Systems for Advanced Applications, pp. 267–274 (2003)
Gonzales, R.C., Woods, E.W.: Digital Image Processing, second edition. Prentice Hall, Upper Saddle River (2001)
Hove, L.-J.: Extending image retrieval systems with a thesaurus for shapes. Master’s thesis, Institute for Information and Media Sciences—University of Bergen (2004)
Jedrzejek C., C.L.: Fast closest codewordsearch algorithm for vector quantization. In: Proceedings of the IEEE Information Theory Workshop ITW’95 (1995)
Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, pp. 119–126 (2003)
Lang, S.: Linear Algebra. Addison-Wesley, Reading (1970)
Li, J., Wang, J.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Anal. Mach. Learn. 25(9), 1075–1088 (2003)
Li, J., Wang, J.: Studying digital imagery of ancient paintings by mixtures of stochastic models. In: IEEE Transactions on Pattern Analysis and Machine Learning, pp. 1–15 (2003b)
Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe lsh: Efficient indexing for high-dimensional similarity search. In: Proceedings of the 33rd international conference on Very large data bases, pp. 950–961 (2007)
Mirmehdi, M., Periasamy, R.: Cbir with perceptual region features. In: BMVC (2001)
Nadler, M., Smith, E.P.: Pattern Recognition Engineering. Wiley, New York (1993)
Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E.H., Petkovic, D., Yanker, P., Faloutsos, C., and Taubin, G. (1993). The qbic project: Querying images by content, using color,texture, and shape. In: Storage and Retrieval for Image and Video Databases (SPIE), pp. 173–187
Olafsson, A., Jonsson, B., Amsaleg, L.: Dynamic behavior of balanced nv-trees. In: International Workshop on Content-Based Multimedia Indexing Conference Proceedings, IEEE, pp. 174–183 (2008)
Paolo Ciaccia, Marco Patella, P.Z.: M-tree: an efficient access method for similarity search in metric spaces. In: VLDB, pp. 426–435 (1997)
Quack, T., Mönich, U., Thiele, L., Manjunath, B.S.: Cortina: a system for large-scale, content-based web image retrieval. In: Proceedings of the 12th annual ACM international conference on Multimedia, pp. 508–511 (2004)
Sakurai, Y., Yoshikawa, M., Uemura, S., Kojima, H.: Spatial indexing of high-dimensional data based on relative approximation. VLDB J. 11(2), 93–108 (2002)
Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)
Wang, J., Li, J., Wiederhold, G.: Simplicity: Semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)
Wang, J.Z., Wiederhold, G., Firschein, O., Wei, S.X.: Content-based image indexing and searching using daubechies wavelets. Int. J. Digit. Libr. 1(4), 311–328 (1997)
Wichert, A.: Content-based image retrieval by hierarchical linear subspace method. J. Intell. Inf. Syst. 31(1), 85–107 (2008)
Wichert, A.: Subspace indexing for extremely high-dimensional cbir. In: International Workshop on Content-Based Multimedia Indexing Conference Proceedings, IEEE, pp. 330–338 (2008b)
Wichert, A.: Subspace tree. In: International Workshop on Content-Based Multimedia Indexing Conference Proceedings, IEEE, pp. 38–44 (2009)
Wichert, A., Teixeira, P., Santos, P., Galhardas, H.: Subspace tree: High dimensional multimedia indexing with logarithmic temporal complexity. J. Intell. Inf. Syst. 35(3), 495–516 (2010)
Zaniolo, C., Ceri, S., Snodgrass, R.T., Zicari, R., Faloutsos, C.: Advanced Database Systems. Morgan Kaufmann, San Francisco (1997)
Acknowledgments
This work was supported by Fundao para a Cencia e Tecnologia (FCT) (INESC-ID multiannual funding) through the PIDDAC Program funds.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Balakrishnan Prabhakaran.
Rights and permissions
About this article
Cite this article
Wichert, A., da Silva Veríssimo, A.F. CBIR with a subspace tree: principal component analysis versus averaging. Multimedia Systems 18, 283–293 (2012). https://doi.org/10.1007/s00530-011-0248-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-011-0248-7