[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An island parallel Harris hawks optimization algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The Harris hawk optimization (HHO) is an impressive optimization algorithm that makes use of unique mathematical approaches. This study proposes an island parallel HHO (IP-HHO) version of the algorithm for optimizing continuous multi-dimensional problems for the first time in the literature. To evaluate the performance of the IP-HHO, thirteen unimodal and multimodal benchmark problems with different dimensions (30, 100, 500, and 1000) are evaluated. The implementation of this novel algorithm took into account the investigation, exploitation, and avoidance of local optima issues effectively. Parallel computation provides a multi-swarm environment for thousands of hawks simultaneously. On all issue cases, we were able to enhance the performance of the sequential version of the HHO algorithm. As the number of processors increases, the suggested IP-HHO method enhances its performance while retaining scalability and improving its computation speed. The IP-HHO method outperforms the other state-of-the-art metaheuristic algorithms on average as the size of the dimensions grows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The test functions and datasets that are used in this study are publicly available on website : (https://www.sfu.ca/ssurjano/optimization.html).

Notes

  1. https://user.ceng.metu.edu.tr/e1451970.

References

  1. BoussaiD I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    Article  MathSciNet  MATH  Google Scholar 

  2. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Article  Google Scholar 

  3. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  4. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4. IEEE, pp 1942–1948

  5. Van Laarhoven PJ, Aarts EH (1987) Simulated annealing. Simulated annealing: theory and applications. Springer, Dordrecht, pp 7–15

    Chapter  MATH  Google Scholar 

  6. Price KV (2013) Differential evolution. Handbook of optimization. Springer, Berlin, Heidelberg, pp 187–214

    Chapter  Google Scholar 

  7. Glover F, Laguna M (1998) Tabu search. Handbook of combinatorial optimization. Springer, Boston, MA, pp 2093–2229

    Chapter  Google Scholar 

  8. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  9. Dokeroglu T, Sevinc E, Kucukyilmaz T, Cosar A (2019) A survey on new generation metaheuristic algorithms. Comput Ind Eng 137:106040

    Article  Google Scholar 

  10. Piotrowski AP, Napiorkowski JJ, Kiczko A (2012) Differential evolution algorithm with separated groups for multi-dimensional optimization problems. Eur J Oper Res 216(1):33–46

    Article  MathSciNet  MATH  Google Scholar 

  11. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  12. Alabool HM, Alarabiat D, Abualigah L, Heidari AA (2021) Harris hawks optimization: a comprehensive review of recent variants and applications. Neural Comput Appl 1–42

  13. Alba E (2005) Parallel metaheuristics: a new class of algorithms. Wiley, New Jersey

    Book  MATH  Google Scholar 

  14. Alba E, Luque G, Nesmachnow S (2013) Parallel metaheuristics: recent advances and new trends. Int Trans Oper Res 20(1):1–48

    Article  MATH  Google Scholar 

  15. Neumann F, Witt C (2010) Combinatorial optimization and computational complexity. Bioinspired computation in combinatorial optimization. Springer, Berlin, Heidelberg, pp 9–19

    Chapter  MATH  Google Scholar 

  16. Leiserson CE, Rivest RL, Cormen TH, Stein C (2001) Introduction to algorithms. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  17. Lefebvre L, Whittle P, Lascaris E, Finkelstein A (1997) Feeding innovations and forebrain size in birds. Anim Behav 53(3):549–560

    Article  Google Scholar 

  18. Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L (2005) Big brains, enhanced cognition, and response of birds to novel environments. Proc Natl Acad Sci 102(15):5460–5465

    Article  Google Scholar 

  19. Bednarz JC (1988) Cooperative hunting Harris’ hawks (Parabuteo unicinctus). Science 239(4847):1525–1527

    Article  Google Scholar 

  20. Gharehchopogh FS, Abdollahzadeh B (2021) An efficient harris hawk optimization algorithm for solving the travelling salesman problem. Clust Comput 1–25

  21. Bairathi D, Gopalani D (2018) A novel swarm intelligence based optimization method: Harris’ hawk optimization. International conference on intelligent systems design and applications. Springer, Cham, pp 832–842

    Google Scholar 

  22. Sabeena M, Abraham L (2021) Digital image forensic using deep flower pollination with adaptive Harris hawk optimization. Multimed Tools Appl 1–23

  23. Dokeroglu T, Deniz A, Kiziloz HE (2021) A robust multiobjective Harris’ hawks optimization algorithm for the binary classification problem. Knowl-Based Syst 227:107219

    Article  Google Scholar 

  24. Too J, Abdullah AR, Mohd Saad N (2019) A new quadratic binary harris hawk optimization for feature selection. Electronics 8(10):1130

    Article  Google Scholar 

  25. Zhang Y, Liu R, Wang X, Chen H, Li C (2020) Boosted binary Harris hawks optimizer and feature selection. Eng Comput 1–30

  26. Dokeroglu T, Pehlivan S, Avenoglu B (2020) Robust parallel hybrid artificial bee colony algorithms for the multi-dimensional numerical optimization. J Supercomput 1–21

  27. Chen H, Heidari AA, Chen H, Wang M, Pan Z, Gandomi AH (2020) Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Futur Gener Comput Syst 111:175–198

    Article  Google Scholar 

  28. Yildiz AR, Yildiz BS, Sait SM, Bureerat S, Pholdee N (2019) A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems. Mater Test 61(8):735–743

    Article  Google Scholar 

  29. Yildiz BS, Yıldız AR (2019) The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components. Mater Test 61(8):744–748

    Article  Google Scholar 

  30. Song S, Wang P, Heidari AA, Wang M, Zhao X, Chen H, Xu S (2021) Dimension decided Harris hawks optimization with Gaussian mutation: balance analysis and diversity patterns. Knowl-Based Syst 215:106425

    Article  Google Scholar 

  31. Alba E, Luque G (2006) Evaluation of parallel metaheuristics. Lect Notes Comput Sci 4193:9–14

    Google Scholar 

  32. Crainic TG, Toulouse M (2003) Parallel strategies for meta-heuristics. Handbook of metaheuristics. Springer, Boston, MA, pp 475–513

    Chapter  Google Scholar 

  33. Schryen G (2020) Parallel computational optimization in operations research: a new integrative framework, literature review and research directions. Eur J Oper Res 287(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  34. Humphries NE, Queiroz N, Dyer JR, Pade NG, Musyl MK, Schaefer KM, Sims DW (2010) Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465(7301):1066–1069

    Article  Google Scholar 

  35. Viswanathan GM, Afanasyev V, Buldyrev SV, Murphy EJ, Prince PA, Stanley HE (1996) Levy flight search patterns of wandering albatrosses. Nature 381(6581):413–415

    Article  Google Scholar 

  36. Sims DW, Southall EJ, Humphries NE, Hays GC, Bradshaw CJ, Pitchford JW, Metcalfe JD (2008) Scaling laws of marine predator search behaviour. Nature 451(7182):1098–1102

    Article  Google Scholar 

  37. Gautestad AO, Mysterud I (2006) Complex animal distribution and abundance from memory-dependent kinetics. Ecol Complex 3(1):44–55

    Article  Google Scholar 

  38. Shlesinger MF (1989) Levy flights: variations on a theme. Phys. D 38(1–3):304–309

    Article  MathSciNet  Google Scholar 

  39. Viswanathan GM, Afanasyev V, Buldyrev SV, Havlin S, Da Luz MGE, Raposo EP, Stanley HE (2000) Lévy flights in random searches. Phys A 282(1–2):1–12

    Article  Google Scholar 

  40. Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press

  41. Tosun U, Dokeroglu T, Cosar A (2013) A robust island parallel genetic algorithm for the quadratic assignment problem. Int J Prod Res 51(14):4117–4133

    Article  Google Scholar 

  42. Dokeroglu T, Cosar A (2014) Optimization of one-dimensional bin packing problem with island parallel grouping genetic algorithms. Comput Ind Eng 75:176–186

    Article  Google Scholar 

  43. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  44. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  Google Scholar 

  45. Rao RV, Savsani VJ, Vakharia DP (2012) Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183(1):1–15

    Article  MathSciNet  Google Scholar 

  46. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput

  47. Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237

    Article  MathSciNet  Google Scholar 

  48. Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89(23–24):2325–2336

    Article  Google Scholar 

  49. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  50. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  51. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  52. Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151

    Article  MATH  Google Scholar 

  53. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Article  Google Scholar 

  54. Digalakis JG, Margaritis KG (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77(4):481–506

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This study is not funded by any institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tansel Dokeroglu.

Ethics declarations

Conflict of interest

There is no conflict of interest between authors. This article does not contain any studies with human participants performed by any of the authors. This article does not contain any studies with animals performed by any of the authors. This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

There is no individual participant included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokeroglu, T., Sevinc, E. An island parallel Harris hawks optimization algorithm. Neural Comput & Applic 34, 18341–18368 (2022). https://doi.org/10.1007/s00521-022-07367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07367-2

Keywords

Navigation