Abstract
Large-scale knowledge graphs (KGs) play a critical role in question answering over KGs (KGs-QA). Despite of large scale, KGs suffer from incompleteness, which has fueled a lot of research on relation prediction. Since existing researches of relation prediction process each triple independently, the hidden relations which are inherently present can not be captured. Complementarily, to simultaneously capture both entity features and relation features in a given entity’s neighborhood, an entity importance estimation network of attention-based graph embedding is proposed, which consists of the attention-based graph embedding module and the entity importance estimation module. Firstly, the new embedding of an entity from its n-hop neighbor is learned by an attention-based graph embedding module. Then, the learned new embedding is integrated into the entity importance estimation module to find entities of high importance in n-hop neighbors of the central entity. Finally, multi-hop relations are encapsulated and an auxiliary edge of n-hop neighbors is introduced, which realizes the relation prediction task. To the best our knowledge, we are the first to realize KGs-QA while realizing relation prediction, which alleviates the phenomenon of missing relations and the low-precision problem of KGs-QA. On the SQ datasets, the proposed method obtains a high F1 score (49.3%) in 10% missing relation, compared to QASE and MCCNNs with F1 scores of 44.2% and 46.3%, respectively.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Esposito M, Damiano E, Minutolo A et al (2020) Hybrid query expansion using lexical resources and word embeddings for sentence retrieval in question answering. Inf Sci 514:88–105
Guo T, Zhou R, Tian C (2020) On the information leakage in private information retrieval systems. IEEE Trans Inf Forensics Secur 15:2999–3012
Trovati M, Zhang H, Ray J et al (2019) An entropy-based approach to real-time information extraction for industry 4.0. IEEE Trans Ind Inform 16(9):6033–6041
Gupta D, Ekbal A, Bhattacharyya P (2019) A deep neural network framework for English Hindi question answering. ACM Trans Asian and Low-Resour Lang Inf Process (TALLIP) 19(2):1–22
Yasunaga M, Ren H, Bosselut A et al (2021) QA-GNN: Reasoning with language models and knowledge graphs for question answering. arXiv preprint arXiv:2104.06378
Vu T, Nguyen TD, Nguyen DQ et al (2019) A capsule network-based embedding model for knowledge graph completion and search personalization. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp 2180–2189
Nathani D, Chauhan J, Sharma C et al (2019) Learning attention-based embeddings for relation prediction in knowledge graphs. arXiv preprint arXiv:1906.01195
Shang Z, Liu Y, Li G et al (2016) K-join: Knowledge-aware similarity join. IEEE Trans Knowl Data Eng 28(12):3293–3308
Zheng W, Cheng H, Yu JX et al (2019) Interactive natural language question answering over knowledge graphs. Inf Sci 481:141–159
Hu S, Zou L, Yu JX et al (2017) Answering natural language questions by subgraph matching over knowledge graphs. IEEE Trans Knowledge Data Eng 30(5):824–837
Y Lan, Jiang J (2020) Query graph generation for answering multi-hop complex questions from knowledge bases. In: Proceedings of the 58th annual meeting of the association for computational linguistics
Srivastava S, Patidar M, Chowdhury S et al (2021) Complex Question Answering on knowledge graphs using machine translation and multi-task learning. In: Proceedings of the 16th conference of the European chapter of the association for computational linguistics: Main Volume. pp 3428–3439
Guo D, Tang D, Duan N et al (2018) Dialog-to-action: Conversational question answering over a large-scale knowledge base. In: Advances in Neural Information Processing Systems. pp 2942–2951
Chen L, Berant J, Le Q et al (2017) Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision. In: Proceedings of the 55th annual meeting of the association for computational linguistics, ACL, 2017
Cen Y, Zhang J, Wang G et al (2019) Trust relationship prediction in alibaba E-commerce platform. IEEE Trans Knowl Data Eng 32(5):1024–1035
Malaviya C, Bhagavatula C, Bosselut A et al (2020) Commonsense knowledge base completion with structural and semantic context. In: Proceedings of the AAAI conference on artificial intelligence. vol 34(03), pp 2925–2933
Lacroix T, Obozinski G, Usunier N (2020) Tensor decompositions for temporal knowledge base completion[J]. arXiv preprint arXiv:2004.04926
Lei K, Zhang J, Xie Y et al (2020) Path-based reasoning with constrained type attention for knowledge graph completion. Neural Comput Appl 32(11):6957–6966
Sajadmanesh S, Bazargani S, Zhang J et al (2019) Continuous-time relationship prediction in dynamic heterogeneous information networks. ACM Trans Knowle Discov Data (TKDD) 13(4):1–31
Saxena A, Tripathi A, Talukdar P (2020) Improving multi-hop question answering over knowledge graphs using knowledge base embeddings. In: Proceedings of the 58th annual meeting of the association for computational linguistics. pp 4498–4507
Mazumder S, Liu B (2017) Context-aware path ranking for knowledge base completion. arXiv preprint arXiv:1712.07745
Nguyen DQ, Nguyen TD, Nguyen DQ et al (2017) A novel embedding model for knowledge base completion based on convolutional neural network. arXiv preprint arXiv:1712.02121
Bordes A, Chopra S, Weston J (2014) Question answering with subgraph embeddings. arXiv preprint arXiv:1406.3676
Dong L, Wei F, Zhou M et al (2015) Question answering over freebase with multi-column convolutional neural networks. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (Volume 1: Long Papers). pp 260–269
Bast H, Haussmann E (2015) More accurate question answering on freebase. In: Proceedings of the 24th ACM international on conference on information and knowledge management. pp 1431–1440
Qiu Y, Zhang K, Wang Y et al (2020) Hierarchical query graph generation for complex question answering over knowledge graph. In: Proceedings of the 29th ACM international conference on information and knowledge management. 1285-1294
Sun H, Bedrax-Weiss T, Cohen WW (2019) Pullnet: Open domain question answering with iterative retrieval on knowledge bases and text. arXiv preprint arXiv:1904.09537
Xiong W, Yu M, Chang S, Guo X, Wang WY (2019) Improving question answering over incomplete kbs with knowledge-aware reader. In: Annual Meeting of the Association for Computational Linguistics (ACL)
Liu H, Hu K, Wang FL et al (2021) Correction to: Aggregating neighborhood information for negative sampling for knowledge graph embedding. Neural Comput Appl 33:1399–1399
Dettmers T, Minervini P, Stenetorp P et al (2018) Convolutional 2d knowledge graph embedding. In: Thirty-second AAAI conference on artificial intelligence
Vashishth S, Sanyal S, Nitin V et al (2020) Interacte: Improving convolution-based knowledge graph embeddings by increasing feature interactions. In: Proceedings of the AAAI conference on artificial intelligence. vol 34(03), pp 3009–3016
Ghorbani M, Baghshah MS, Rabiee HR (2019) MGCN: Semi-supervised classification in multi-layer graphs with graph convolutional networks. In: Proceedings of the IEEE/ACM international conference on advances in social networks analysis and mining. pp 208–211
Song Y, Wang H, Wang Z et al (2011) Short text conceptualization using a probabilistic knowledgebase. In: Twenty-second international joint conference on artificial intelligence
Park N, Kan A, Dong XL et al (2019) Estimating node importance in knowledge graphs using graph neural networks. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining. pp 596–606
Cui W, Xiao Y, Wang H et al (2019) KBQA: learning question answering over QA corpora and knowledge bases. arXiv preprint arXiv:1903.02419
Su Y, Sun H, Sadler B et al (2016) On generating characteristic-rich question sets for qa evaluation. In: Proceedings of the conference on empirical methods in natural language processing. pp 562–572
Cabaleiro B, Peñas A, Manandhar S (2017) Grounding proposition stores for question answering over linked data. Knowl Based Syst 128:34–42
Yang B, Yih W, He X et al (2014) Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575
Trouillon T, Welbl J, Riedel S, et al (2016) Complex embeddings for simple link prediction. In: International conference on machine learning. PMLR, pp 2071–2080
Zheng W, Zou L, Lian X et al (2015) How to build templates for RDF question/answering: An uncertain graph similarity join approach. In: Proceedings of the ACM SIGMOD international conference on management of data. pp 1809–1824
Abujabal A, Yahya M, Riedewald M et al (2017) Automated template generation for question answering over knowledge graphs. In: Proceedings of the 26th international conference on world wide web. pp 1191–1200
Acknowledgements
This work is supported by Chongqing Postgraduate Research and Innovation Project under Grant CYB20175;National Natural Science Foundation of China under Grants 61903057; Science and Technology Reasearch Program of Chongqing Municipal Education Commission Grants KJQN202000602; the Chongqing Natural Science Foundation under Grant cstc2019jcyj-msxmX0129; the Artificial Intelligence Technology Innovation Significant Theme Special Project of Chongqing Science and Technology Commission cstc2019jscx-zdztzxX0027.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There are no potential competing interests in our paper. And all authors have seen the manuscript and approved to submit to your journal. We confirm that the content of the manuscript has not been published or submitted for publication elsewhere.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhao, F., Li, Y., Hou, J. et al. Improving question answering over incomplete knowledge graphs with relation prediction. Neural Comput & Applic 34, 6331–6348 (2022). https://doi.org/10.1007/s00521-021-06736-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-021-06736-7