[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

New criteria on the finite-time stability of fractional-order BAM neural networks with time delay

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, the finite-time stability of a class of fractional-order bidirectional associative memory neural networks(FBAMNNs) with time delay is concerned. Based on the monotonicity of function, a new inequality is proved. For \(0< \alpha < 1\) and \(1< \alpha < 2\), based on the properties of the fractional derivative, the method of step and the fractional Gronwall inequality or the generalized Gronwall inequality, some new criteria on the finite-time stability of FBAMNNs are derived. Finally, three numerical examples are provided to show the effectiveness and superiority of the criteria obtained in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Caputo M, Mainardi F (1971) A new dissipation model based on memory mechanism. Pure Appl Geophys 9(1):134–147

    Article  MATH  Google Scholar 

  2. Podlubny I (1999) Fractional-order systems and \(PI^\lambda D^\mu\)-controllers. IEEE Trans Automat Control 44(1):208–214

    Article  MathSciNet  MATH  Google Scholar 

  3. Oustaloup A (1995) La dérivation non entiére: Théorie, synthése et applications. Hermés, Paris

  4. El-Misiery AEM, Ahmed E (2006) On a fractional model for earthquakes. Appl Math Comput 178(2):207–211

    MathSciNet  MATH  Google Scholar 

  5. Arafa AAM, Rida SZ, Khalil M (2014) A fractional-order model of HIV infection: numerical solution and comparisons with data of patients. Int J Biomath 7(4):1450036

    Article  MathSciNet  MATH  Google Scholar 

  6. Das S, Pan I (2012) Fractional order signal processing: introductory concepts and applications. Springer Briefs in Applied Sciences and Technology, Springer, Heidelberg

    Book  MATH  Google Scholar 

  7. Valério D, Sá Da Costa J (2013) An introduction to fractional control. Institution of Engineering and Technology, London

    MATH  Google Scholar 

  8. Pao YH (1989) Adaptive pattern recognition and neural networks. Addison-Wesley, New York

    MATH  Google Scholar 

  9. Boroomand A, Menhaj MB (2008) Fractional-order hopfield neural networks. Springer, Heidelberg

    Google Scholar 

  10. Pu YF, Yi Z, Zhou JL (2017) Fractional Hopfield neural networks: fractional dynamic associative recurrent neural networks. IEEE Trans Neural Netw Learn Syst 28(10):2319–2333

    Article  MathSciNet  Google Scholar 

  11. Pratap A, Raja R, Cao JD, Lim CP, Bagdasar O (2019) Stability and pinning synchronization analysis of fractional order delayed Cohen-Grossberg neural networks with discontinuous activations. Appl Math Comput 359:241–260

    MathSciNet  MATH  Google Scholar 

  12. Wang FX, Liu XG, Tang ML, Chen LF (2019) Further results on stability and synchronization of fractional-order Hopfield neural networks. Neurocomputing 346:12–19

    Article  Google Scholar 

  13. Wang FX, Liu XG, Li J (2018) Synchronization analysis for fractional non-autonomous neural networks by a Halanay inequality. Neurocomputing 314:20–29

    Article  Google Scholar 

  14. Li Y, Kao YG, Wang CH, Xia HW (2020) Finite-time synchronization of delayed fractional-order heterogeneous complex networks. Neurocomputing 384:368–375

    Article  Google Scholar 

  15. Chen CY, Zhu S, Wei YC, Yang CY (2020) Finite-time stability of delayed memristor-based fractional-order neural networks. IEEE Tran Cybern 50(4):1607–1616

    Article  Google Scholar 

  16. Zhang WW, Zhang H, Cao JD, Zhang HM, Chen DY (2020) Synchronization of delayed fractional-order complex-valued neural networks with leakage delay. Phys A 556:124710

    Article  MathSciNet  Google Scholar 

  17. Ratchagit K, Phat VN (2010) Stability criterion for discrete-time systems. J Inequal Appl 2010:201459

    Article  MathSciNet  MATH  Google Scholar 

  18. Ratchagit K (2007) Asymptotic stability of delay-difference system of Hopfield neural networks via matrix inequalities and application. Inter J Neural Syst 17(5):425–430

    Article  Google Scholar 

  19. Chen JJ, Chen BS, Zeng ZG (2019) Global asymptotic stability and adaptive ultimate Mittag-Leffler synchronization for a fractional-order complex-valued memristive neural networks with delays. IEEE Trans Syst Man Cybern Syst 49(12):2519–2535

    Article  Google Scholar 

  20. Zhang S, Yu YG, Wang H (2015) Mittag-Leffler stability of fractional-order Hopfield neural networks. Nonlinear Anal Hybrid Syst 16:104–121

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhou FY, Ma CR (2018) Mittag-Leffler stability and global asymptotically \(\omega\)-periodicity of fractional-order BAM neural networks with time-varying delays. Neural Process Lett 47:71–98

    Article  Google Scholar 

  22. Srivastava HM, Abbas S, Tyagi S, Lassoued D (2018) Global exponential stability of fractional-order impulsive neural network with time-varying and distributed delay. Math Meth Appl Sci 41:2095–2104

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang S, Hu C, Yu J, Jiang HJ (2020) Exponential stability of fractional-order impulsive control systems with applications in synchronization. IEEE Trans Cybern 50(7):3157–3168

    Article  Google Scholar 

  24. Wang YW, Yang W, Xiao JW, Zeng ZG (2017) Impulsive multisynchronization of coupled multistable neural networks with time-varying delay. IEEE Trans Neural Netw Learn Syst 28(7):1560–1571

    Article  MathSciNet  Google Scholar 

  25. Kosko B (1988) Bidirectional associative memories. IEEE Trans Syst Man Cybernet 18(1):49–60

    Article  MathSciNet  Google Scholar 

  26. Pratap A, Raja R, Cao JD, Rihan FA, Seadawy AR (2020) Quasi-pinning synchronization and stabilization of fractional order BAM neural networks with delays and discontinuous neuron activations. Chaos Solitons Frac 131:109491

    Article  MathSciNet  Google Scholar 

  27. Zhang JM, Wu JW, Bao HB, Cao JD (2018) Synchronization analysis of fractional-order three-neuron BAM neural networks with multiple time delays. Appl Math Comput 339:441–450

    MathSciNet  MATH  Google Scholar 

  28. Iswarya M, Raja R, Rajchakit G, Cao JD, Alzabut J, Huang CX (2019) Existence, uniqueness and exponential stability of periodic solution for discrete-time delayed bam neural networks based on coincidence degree theory and graph theoretic method. Mathematics 7(11):1055

    Article  Google Scholar 

  29. Rajchakit G, Pratap A, Raja R, Cao JD, Alzabut J, Huang CX (2019) Hybrid control scheme for projective lag synchronization of Riemann-Liouville sense fractional order memristive BAM neural networks with mixed delays. Mathematics 7(8):759

    Article  Google Scholar 

  30. Humphries U, Rajchakit G, Kaewmesri P, Chanthorn P, Sriraman R, Samidurai R, Lim CP (2020) Global stability analysis of fractional-order quaternion-valued bidirectional associative memory neural networks. Mathematics 8(5):801

    Article  Google Scholar 

  31. Cheng J, Zhong SM, Zhong QS, Zhu H, Du Y (2014) Finite-time boundedness of state estimation for neural networks with time-varying delays. Neurocomputing 129:257–264

    Article  Google Scholar 

  32. Niamsup P, Ratchagit K, Phat VN (2015) Novel criteria for finite-time stabilization and guaranteed cost control of delayed neural networks. Neurocomputing 160:281–286

    Article  Google Scholar 

  33. Wu RC, Lu YF, Chen LP (2015) Finite-time stability of fractional delayed neural networks. Neurocomputing 149:700–707

    Article  Google Scholar 

  34. Du FF, Lu JG (2021) New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay. Appl Math Comput 389:125616

    MathSciNet  MATH  Google Scholar 

  35. Hu TT, He Z, Zhang XJ, Zhong SM (2020) Finite-time stability for fractional-order complex-valued neural networks with time delay. Appl Math Comput 365:124715

    MathSciNet  MATH  Google Scholar 

  36. Saravanan S, Ali MS, Rajchakit G, Hammachukiattikul B, Priya B, Thakur GK (2021) Finite-time stability analysis of switched genetic regulatory networks with time-varying delays via Wirtinger’s integral inequality. Complexity 2021:9540548

    Article  Google Scholar 

  37. Zhang LZ, Yang YQ (2020) Finite time impulsive synchronization of fractional order memristive BAM neural networks. Neurocomputing 384:213–224

    Article  Google Scholar 

  38. Xiao JY, Zhong SM, Li YT, Xu F (2017) Finite-time Mittag-Leffler synchronization of fractional-order memristive BAM neural networks with time delays. Neurocomputing 219:431–439

    Article  Google Scholar 

  39. Ke YQ (2017) Finite-time stability of fractional order BAM neural networks with time delay. J Discret Math Sci Cryptogr 20(3):681–693

    Article  MathSciNet  Google Scholar 

  40. Yang Z, Zhang J, Niu Y (2020) Finite-time stability of fractional-order bidirectional associative memory neural networks with mixed time-varying delays. J Appl Math Comput 63:501–522

    Article  MathSciNet  MATH  Google Scholar 

  41. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elservier Science, Amsterdam

    MATH  Google Scholar 

  42. Ye HP, Gao JM, Ding YS (2007) A generalized Gronwall inequality and its application to a fractional differential equation. J Math Anal Appl 328:1075–1081

    Article  MathSciNet  MATH  Google Scholar 

  43. Morgado ML, Ford NJ, Lima PM (2013) Analysis and numerical methods for fractional differential equations with delay. J Comput Appl Math 252:159–168

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang ZY, Zhang J (2019) Stability analysis of fractional-order bidirectional associative memory neural networks with mixed time-varying delays. Complexity 2019:2363707

    Article  MATH  Google Scholar 

  45. Wang L, Luo ZP, Yang HL, Cao JD (2016) Stability of genetic regulatory networks based on switched systems and mixed time-delays. Math Biosci 278:94–99

    Article  MathSciNet  MATH  Google Scholar 

  46. Li Z, Chen DY, Liu YR, Zhao YF (2016) New delay-dependent stability criteria of genetic regulatory networks subject to time-varying delays. Neurocomputing 207:763–771

    Article  Google Scholar 

  47. Anbalagan P, Hincal E, Ramachandran R, Baleanu D, Cao JD, Niezabitowski M (2021) A Razumikhin approach to stability and synchronization criteria for fractional order time delayed gene regulatory networks. AIMS Math 6(5):4526–4555

    Article  MathSciNet  Google Scholar 

  48. Qiao YH, Yan HY, Duan LJ, Miao J (2020) Finite-time synchronization of fractional-order gene regulatory networks with time delay. Neural Netw 126:1–10

    Article  MATH  Google Scholar 

  49. Zhang YG, Zhou DH (2000) Online estimation approach based on genetic algorithm to time-varying time delay of nonlinear systems. Control Decis 15(6):756–758

    Google Scholar 

  50. Hachino T, Yang ZJ, Tsuji T (1996) On-line identification of continuous time-delay systems using the genetic algorithm. Electr Eng Jpn 116(6):866–874

    Article  Google Scholar 

Download references

Funding

The National Natural Science Foundation of China under grant Nos. 61773404 and 61271355 and Fundamental Research Funds for the Central Universities of Central South University No. 2018zzts007.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xinge Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, X. & Zhang, S. New criteria on the finite-time stability of fractional-order BAM neural networks with time delay. Neural Comput & Applic 34, 4501–4517 (2022). https://doi.org/10.1007/s00521-021-06605-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06605-3

Keywords

Navigation