[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Automatic identification of epileptic seizure signal using optimized added kernel support vector machine (OAKSVM)

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this work, empirical mode decomposition (EMD)-based optimized added kernel least square support vector machine (OAKLSSVM) hybridized model is proposed for automatic identification of epileptic electroencephalogram (EEG) signals where the kernel parameters are being optimized using water cycle algorithm (WCA). The proposed model with EMD decomposition and WCA optimization together is known as EMD-OAKLSSVM-WCA. Here, two kernel functions i.e., radial basis function and wavelet kernel functions are deployed together to form the added kernel framework. From EMD, intrinsic mode functions (IMFs) are obtained where Hilbert transform (HT) is used to obtain analytic form of IMFs. For classifying seizure and non-seizure EEG signals, the frequency modulation bandwidth and amplitude modulation bandwidth parameters are obtained from the analytical IMFs and are used as features for the OAKLSSVM model. The experimental results validate the efficiency of the proposed model which provides better classification accuracy (99.33%) as compared to different promising classifiers and some state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Iasemidis LD, Shiau DS, Chaovalitwongse W, Sackellares JC, Pardalos PM, Principe JC, Tsakalis K (2003) Adaptive epileptic seizure prediction system. IEEE Trans Biomed Eng 50(5):616–627

    Article  Google Scholar 

  2. Srinivasan V, Eswaran C, Sriraam AN (2005) Artificial neural network based epileptic detection using time-domain and frequency-domain features. J Med Syst 29(6):647–660

    Article  Google Scholar 

  3. Polat K, Güneş S (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 187(2):1017–1026

    MathSciNet  MATH  Google Scholar 

  4. Ocak H (2008) Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Process 88(7):1858–1867

    Article  MathSciNet  MATH  Google Scholar 

  5. You Y, Chen W, Li M, Zhang T, Jiang Y, Zheng X (2020) Automatic focal and non-focal EEG detection using entropy-based features from flexible analytic wavelet transform. Biomed Signal Process Control 57:101761

    Article  Google Scholar 

  6. Patidar S, Panigrahi T (2017) Detection of epileptic seizure using Kraskov entropy applied on tunable-Q wavelet transform of EEG signals. Biomed Signal Process Control 34:74–80

    Article  Google Scholar 

  7. Guo L, Rivero D, Pazos A (2010) Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods 193(1):156–163

    Article  Google Scholar 

  8. Ocak H (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36(2):2027–2036

    Article  Google Scholar 

  9. Li M, Chen W, Zhang T (2017) Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network ensemble. Biomed Signal Process Control 31:357–365

    Article  Google Scholar 

  10. Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32(4):1084–1093

    Article  Google Scholar 

  11. Schuyler R, White A, Staley K, Cios KJ (2007) Epileptic seizure detection. IEEE Eng Med Biol Mag 26(2):74–81

    Article  Google Scholar 

  12. Tzallas AT, Tsipouras MG, Fotiadis DI (2009) Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Trans Inf Technol Biomed 13(5):703–710

    Article  Google Scholar 

  13. Huang NE, Wu ML, Qu W, Long SR, Shen SS (2003) Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Appl Stoch Models Bus Ind 19(3):245–268

    Article  MathSciNet  MATH  Google Scholar 

  14. Fu K, Qu J, Chai Y, Dong Y (2014) Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed Signal Process Control 13:15–22

    Article  Google Scholar 

  15. Li S, Zhou W, Yuan Q, Geng S, Cai D (2013) Feature extraction and recognition of ictal EEG using EMD and SVM. Comput Biol Med 43(7):807–816

    Article  Google Scholar 

  16. Richhariya B, Tanveer M (2018) EEG signal classification using universum support vector machine. Expert Syst Appl 106:169–182

    Article  Google Scholar 

  17. Zhou W, Liu Y, Yuan Q, Li X (2013) Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG. IEEE Trans Biomed Eng 60(12):3375–3381

    Article  Google Scholar 

  18. Wang S, Chaovalitwongse WA, Wong S (2013) Online seizure prediction using an adaptive learning approach. IEEE Trans Knowl Data Eng 25(12):2854–2866

    Article  Google Scholar 

  19. Orhan U, Hekim M, Ozer M (2011) EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 38(10):13475–13481

    Article  Google Scholar 

  20. Kamrul Hasan Md, Asif Ahamed Md, Ahmad M, Rashid MA (2017) Prediction of epileptic seizure by analysing time series EEG signal using k-NN classifier. Appl Bionics Biomech 2017:1–12. https://doi.org/10.1155/2017/6848014

    Article  Google Scholar 

  21. Ghosh-Dastidar S, Adeli H, Dadmehr N (2007) Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans Biomed Eng 54(9):1545–1551

    Article  Google Scholar 

  22. Zhang T, Chen W, Li M (2018) Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest. Biocybern Biomed Eng 38(3):519–534

    Article  Google Scholar 

  23. Jin Z, Zhou G, Gao D, Zhang Y (2020) EEG classification using sparse Bayesian extreme learning machine for brain–computer interface. Neural Comput Appl 32(11):6601–6609

    Article  Google Scholar 

  24. Yuan Q, Zhou W, Li S, Cai D (2011) Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res 96(1–2):29–38

    Article  Google Scholar 

  25. Kumar SU, Inbarani HH (2017) PSO-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task. Neural Comput Appl 28(11):3239–3258

    Article  Google Scholar 

  26. Gupta A, Singh P, Karlekar M (2018) A novel signal modeling approach for classification of seizure and seizure-free EEG signals. IEEE Trans Neural Syst Rehabil Eng 26(5):925–935

    Article  Google Scholar 

  27. Guo L, Rivero D, Dorado J, Rabunal JR, Pazos A (2010) Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J Neurosci Methods 191(1):101–109

    Article  Google Scholar 

  28. Güler NF, Übeyli ED, Güler I (2005) Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst Appl 29(3):506–514

    Article  Google Scholar 

  29. Lehnertz K, Elger CE (1995) Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalogr Clin Neurophysiol 95(2):108–117

    Article  Google Scholar 

  30. Accardo A, Affinito M, Carrozzi M, Bouquet F (1997) Use of the fractal dimension for the analysis of electroencephalographic time series. Biol Cybern 77(5):339–350

    Article  MATH  Google Scholar 

  31. Srinivasan V, Eswaran C, Sriraam N (2007) Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed 11(3):288–295

    Article  Google Scholar 

  32. Liang SF, Wang HC, Chang WL (2010) Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP J Adv Signal Process 2010:1–15

    Article  Google Scholar 

  33. Zavar M, Rahati S, Akbarzabeh MR, Ghasemifard H (2011) Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection. Expert Syst Appl 38:10751–10758

    Article  Google Scholar 

  34. Samiee K, Kovacs P, Gabbouj M (2014) Epileptic seizure classification of EEG time-series using rational discrete short-time Fourier transform. IEEE Trans Biomed Eng 62(2):541–552

    Article  Google Scholar 

  35. Gandhi T, Panigrahi BK, Anand S (2011) A comparative study of wavelet families for EEG signal classification. Neurocomputing 74(17):3051–3057

    Article  Google Scholar 

  36. Peker M, Sen B, Delen D (2016) A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE J Biomed Health Inform 20(1):108–118

    Article  Google Scholar 

  37. Siuly S, Li Y, Wen P (2011) Clustering technique-based least square support vector machine for EEG signal classification. Comput Methods Program Biomed 104:358–372

    Article  Google Scholar 

  38. Nicolaou N, Georgiou J (2012) Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst Appl 39(1):202–209

    Article  Google Scholar 

  39. Flandrin P, Rilling G, Goncalves P (2004) Empirical mode decomposition as a filter bank. IEEE Signal Process Lett 11(2):112–114

    Article  Google Scholar 

  40. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci 454(1971):903–995

    Article  MathSciNet  MATH  Google Scholar 

  41. Pachori RB, Bajaj V (2011) Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput Methods Programs Biomed 104(3):373–381

    Article  Google Scholar 

  42. Rehman N, Xia Y, Mandic DP (2010) Application of multivariate empirical mode decomposition for seizure detection in EEG signals. In: 2010 annual international conference of the IEEE engineering in medicine and biology. IEEE, pp 1650–1653

  43. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm: a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166

    Article  Google Scholar 

  44. Brugnoli E, Toscano E, Vetro C (2019) Iterative reconstruction of signals on graph. IEEE Signal Process Lett 27:76–80

    Article  Google Scholar 

  45. Cohen L, Lee C (1990) Instantaneous bandwidth for signals and spectrogram. In: 1990 proceedings of the international conference acoustics, speech, signal process. IEEE, pp 2450–2454

  46. Vapnik V (1995) The nature of statistical learning theory. Springer, NewYork

    Book  MATH  Google Scholar 

  47. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  48. Fletcher R (1981) Practical methods of optimization: volume 2 constrained optimization. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Dash.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest for this paper with any person or any organization.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samal, D., Dash, P.K. & Bisoi, R. Automatic identification of epileptic seizure signal using optimized added kernel support vector machine (OAKSVM). Neural Comput & Applic 33, 9109–9123 (2021). https://doi.org/10.1007/s00521-020-05675-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05675-z

Keywords

Navigation