[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Evidence of power-law behavior in cognitive IoT applications

  • S.I. : Applying Artificial Intelligence to the Internet of Things
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The motivations induced due to the presence of scale-free characteristics of neural systems governed by the well-known power-law distribution of neuronal activities have led to its convergence with the Internet of things (IoT) framework. The IoT is one such framework, where the self-organization of the connected devices is a momentous aspect. The devices involved in these networks inherently relate to the collection of several consolidated devices like the sensory devices, consumer appliances, wearables, and other associated applications, which facilitate a ubiquitous connectivity among the devices. This is one of the most significant prerequisites of IoT systems as several interconnected devices need to be included in the convolution for the uninterrupted execution of the services. Thus, in order to understand the scalability and the heterogeneity of these interconnected devices, the exponent of power-law plays a significant role. In this paper, an analytical framework to illustrate the ubiquitous power-law behavior of the IoT devices is derived. An emphasis regarding the mathematical insights for the characterization of the dynamic behavior of these devices is conceptualized. The observations made in this direction are illustrated through simulation results. Further, the traits of the wireless sensor networks, in context with the contemporary scale-free architecture, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Fortino G, Trunfio P (2014) Internet of things based on smart objects: technology, middleware and applications. Springer, Berlin

    Book  Google Scholar 

  2. Vermesan O, Friess P (2013) Internet of things: converging technologies for smart environments and integrated ecosystems. River Publishers, Delft

    Google Scholar 

  3. Amendola S, Lodato R, Manzari S, Occhiuzzi C, Marrocco G (2014) Rfid technology for iot-based personal healthcare in smart spaces. IEEE Internet Things J 1(2):144–152

    Article  Google Scholar 

  4. Barcelo M, Correa A, Llorca J, Tulino AM, Vicario JL, Morell A (2016) Iot-cloud service optimization in next generation smart environments. IEEE J Sel Areas Commun 34(12):4077–4090

    Article  Google Scholar 

  5. Sohn I (2017) Small-world and scale-free network models for IoT systems. Mob Inf Syst 2017:9

    Google Scholar 

  6. Zhang D-G, Zhu Y-N, Zhao C-P, Dai W-B (2012) A new constructing approach for a weighted topology of wireless sensor networks based on local-world theory for the internet of things (IoT). Comput Math Appl 64:1044–1055

    Article  MATH  Google Scholar 

  7. Li F, Vögler M, Claeßens M, Dustdar S (2013) Towards automated IoT application deployment by a cloud-based approach. In: 2013 IEEE 6th international conference on service-oriented computing and applications, pp 61–68. IEEE

  8. Blaauw D, Sylvester D, Dutta P, Lee Y, Lee I, Bang S, Kim Y, Kim G, Pannuto P, Kuo Y-S et al (2014) Iot design space challenges: circuits and systems. In: 2014 Symposium on VLSI technology (VLSI-technology): digest of technical papers, pp 1–2. IEEE

  9. da Silva ACF, Breitenbücher U, Hirmer P, Képes K, Kopp O, Leymann F, Mitschang B, Steinke R (2017) Internet of things out of the box: using tosca for automating the deployment of iot environments. In: CLOSER, pp 330–339

  10. Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406(6794):378

    Article  Google Scholar 

  11. Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268

    Article  MATH  Google Scholar 

  12. Yang S-J (2005) Exploring complex networks by walking on them. Phys Rev E 71(1):016107

    Article  Google Scholar 

  13. Aste T, Gramatica R, Di Matteo T (2012) Exploring complex networks via topological embedding on surfaces. Phys Rev E 86(3):036109

    Article  Google Scholar 

  14. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47

    Article  MathSciNet  MATH  Google Scholar 

  15. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  MATH  Google Scholar 

  16. Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A (2004) Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys Rev Lett 92(17):178701

    Article  Google Scholar 

  17. Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5(1):17–60

    MathSciNet  MATH  Google Scholar 

  18. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440

    Article  MATH  Google Scholar 

  19. Perotti JI, Tamarit FA, Cannas SA (2006) A scale-free neural network for modelling neurogenesis. Phys A 371(1):71–75

    Article  Google Scholar 

  20. Faqeeh A, Osat S, Radicchi F, Gleeson JP (2019) Emergence of power laws in noncritical neuronal systems. Phys Rev E 100(1):010401

    Article  Google Scholar 

  21. Barabási A-L, Jeong H, Néda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Phys A 311(3–4):590–614

    Article  MathSciNet  MATH  Google Scholar 

  22. Senapati D, Karmeshu (2016) Generation of cubic power-law for high frequency intra-day returns: maximum Tsallis entropy framework. Digit Signal Proc 48:276–284

    Article  MathSciNet  Google Scholar 

  23. Mukherjee T, Singh AK, Senapati D (2019) Performance evaluation of wireless communication systems over weibull/q-lognormal shadowed fading using Tsallis entropy framework. Wirel Pers Commun 106(2):789–803

    Article  Google Scholar 

  24. Singh AK, Singh HP, Karmeshu (2014) Analysis of finite buffer queue: maximum entropy probability distribution with shifted fractional geometric and arithmetic means. IEEE Commun Lett 19(2):163–166

    Article  Google Scholar 

  25. Singh AK, Karmeshu (2014) Power law behavior of queue size: maximum entropy principle with shifted geometric mean constraint. IEEE Commun Lett 18(8):1335–1338

    Article  Google Scholar 

  26. Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci 101(11):3747–3752

    Article  MATH  Google Scholar 

  27. Newman MEJ, Watts DJ, Strogatz SH (2002) Random graph models of social networks. Proc Natl Acad Sci 99(suppl 1):2566–2572

    Article  MATH  Google Scholar 

  28. Aiello W, Chung F, Lu L (2000) A random graph model for massive graphs. In: STOC, vol 2000, pp 1–10. Citeseer

  29. Pastor-Satorras R, Rubi M, Diaz-Guilera A (2003) Statistical mechanics of complex networks, vol 625. Springer, Berlin

    Book  MATH  Google Scholar 

  30. Crucitti P, Latora V, Marchiori M, Rapisarda A (2004) Error and attack tolerance of complex networks. Phys A 340(1–3):388–394

    Article  MathSciNet  MATH  Google Scholar 

  31. Brown KS, Hill CC, Calero GA, Myers CR, Lee KH, Sethna JP, Cerione RA (2004) The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys Biol 1(3):184

    Article  Google Scholar 

  32. Holme P (2003) Congestion and centrality in traffic flow on complex networks. Adv Complex Syst 6(02):163–176

    Article  MATH  Google Scholar 

  33. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701

    Article  Google Scholar 

  34. Barabási A-L, Albert R, Jeong H (1999) Mean-field theory for scale-free random networks. Phys A Stat Mech Appl 272(1–2):173–187

    Article  Google Scholar 

  35. Amaral LAN, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci 97(21):11149–11152

    Article  Google Scholar 

  36. Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc R Soc Lond Ser B Biol Sci 268(1478):1803–1810

    Article  Google Scholar 

  37. Fell DA, Wagner A (2000) The small world of metabolism. Nat Biotechnol 18(11):1121

    Article  Google Scholar 

  38. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore ED (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72

    Article  Google Scholar 

  39. Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci 103(51):19518–19523

    Article  Google Scholar 

  40. Bassett DS, Bullmore ED (2006) Small-world brain networks. Neuroscientist 12(6):512–523

    Article  Google Scholar 

  41. Barrat A, Barthélemy M, Vespignani A (2004) Modeling the evolution of weighted networks. Phys Rev E 70(6):066149

    Article  Google Scholar 

  42. Rajput NK, Ahuja B, Riyal MK (2019) A statistical probe into the word frequency and length distributions prevalent in the translations of Bhagavad Gita. Pramana 92(4):60

    Article  Google Scholar 

  43. Rajput NK, Ahuja B, Riyal MK (2018) A novel approach towards deriving vocabulary quotient. Dig Scholarsh Humanit 33(4):894–901

    Article  Google Scholar 

  44. Prettejohn BJ, Berryman MJ, McDonnell MD (2011) Methods for generating complex networks with selected structural properties for simulations: a review and tutorial for neuroscientists. Front Comput Neurosci 5:11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dilip Senapati, Hari Mohan Pandey or Prayag Tiwari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bebortta, S., Senapati, D., Rajput, N.K. et al. Evidence of power-law behavior in cognitive IoT applications. Neural Comput & Applic 32, 16043–16055 (2020). https://doi.org/10.1007/s00521-020-04705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04705-0

Keywords

Navigation