[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The battery in the electric vehicles provides the electrical energy necessary to power all electrical and electronic components and main-drive electric motor. So, an accurate estimation of discharge capacity to predict the battery’s end of life is of paramount importance and critical for safe and efficient energy utilization, especially for battery management systems. The resistor–capacitor (RC) equivalent circuit model is commonly used in the literature to model battery. However, a battery is a chemical energy storage system, and then the RC model will therefore be extremely sensitive to the presence of vagueness of information due to that some parameters cannot be directly accessed using sensors. In this paper, we propose a new design methodology for estimating simultaneously the model and the discharge capacity of a Nickel–Metal Hydride (Ni–MH) battery. A modified fuzzy c-regression model algorithm is used to construct a prediction model for a small Ni–MH battery pack. Then, the model, so developed, is used to estimate the discharge capacity of the battery and to predict its remaining useful life. The validity of the proposed method is experimentally verified. According to experimental results, the proposed method can achieve satisfactory results with no more than a 2% error rate for the training and test data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

\( f_{i}(\mathbf x _{k},{\theta }_{i}) \) :

i-th regression model of the k-th input

\( {\varvec{\sigma }}_{ik}\) :

Standard deviations

\( \varvec{\nu }_{ik}\) :

Fuzzy sets centers

U :

Partition matrix of the membership degrees

\(\delta _{i}\) :

Scale parameter

\(\mu _{ik}\) :

Fuzzy membership degree of each input–output data pair belonging to the ith cluster

\(\mu _{*k}\) :

Fuzzy membership degree of the noise cluster

\(\phi \) :

Cross-correlation function

\(\mathbf x _{k}\) :

System input

c :

Number of rules

\(D_{ik}\) :

Distance (error measure) between the value predicted by the model and the real output

E :

Terminal voltage (V)

I :

Input current (A)

\(I_{o} \) :

Terminal current (A)

m :

Fuzzy weighting exponent

M :

Dimension of input vector

N :

Data number

\(y_{k}\) :

Desired output

\({\varvec{\theta }}_{i}\) :

Parameter vector of the corresponding output model

References

  1. Belgacem YB, Khaldi C, Lamloumi J, Takenouti H (2015) Effect of the discharge rate on the electrochemical properties of La Y2Ni9 hydrogen storage alloy. J Alloys Compd 631(Supplement C):7–14

    Article  Google Scholar 

  2. Belgacem YB, Khaldi C, Lamloumi J, Takenouti H (2016) The electrochemical performance of ab3-type hydrogen storage alloy as anode material for the nickel metal hydride accumulators. J Solid State Electrochem 20:1949–1959

    Article  Google Scholar 

  3. Billings SA ed (2013) Model validation. In: Nonlinear system identification: NARMAX methods in the time, frequency, and spatio–temporal domains. Wiley, pp 119–147. https://doi.org/10.1002/9781118535561.ch5

  4. Blaszczuk A, Krzywanski J (2017) A comparison of fuzzy logic and cluster renewal approaches for heat transfer modeling in a 1296 t/h CFB boiler with low level of flue gas recirculation. Arch Thermodyn 38:91–122

    Article  Google Scholar 

  5. BlLLINGS S, Voon W (1986) Correlation based model validity tests for non-linear models. Int J Control 44(1):235–244

    Article  Google Scholar 

  6. BNEF (2018) Electric vehicle outlook 2018. Tech. rep., Bloomberg New Energy Finance

  7. Boukouvalas A, Cornford D, Stehlik M (2014) Optimal design for correlated processes with input-dependent noise. Comput Stat Data Anal 71:1088–1102. https://doi.org/10.1016/j.csda.2013.09.024

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang CW, Tao CW (2017) A novel approach to implement Takagi–Sugeno fuzzy models. IEEE Trans Cybern 47(9):2353–2361

    Article  Google Scholar 

  9. Chaoshun L, Wen Z, Nan Z, Xinjie L (2018) An evolving T–S fuzzy model identification approach based on a special membership function and its application on pump-turbine governing system. Eng Appl Artif Intell 69:93–103

    Article  Google Scholar 

  10. Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278

    Article  Google Scholar 

  11. EIA (2017) International energy outlook 2017. DOE/EIA-0484(2017). U.S. Energy Information Administration

  12. Galeotti M, Giammanco C, Cinà L, Cordiner S, Carlo AD (2015) Synthetic methods for the evaluation of the state of health (SOH) of nickel–metal hydride (NiMH) batteries. Energy Convers Manag 92:1–9

    Article  Google Scholar 

  13. Gentile C, Li S, Kar P, Karatzoglou A, Zappella G, Etrue E (2017) On context-dependent clustering of bandits. In: Precup D, Teh YW (eds.) Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017, Proceedings of machine learning research, vol. 70, pp 1253–1262. PMLR

  14. Giaimo R, MATRANGA D (1997) Fuzzy clustering methods for territorial stratification. Stat Appl 9:459–472

    Google Scholar 

  15. Guo H, Feng Y, Hao F, Zhong S, Li S (2014) Dynamic fuzzy logic control of genetic algorithm probabilities. J Comput 9(1):22–27

    Article  Google Scholar 

  16. Hao F, Park DS, Li S, Lee H (2016) Mining \(\lambda \)-maximal cliques from a fuzzy graph. Sustainability 8(6):553

    Google Scholar 

  17. Hathaway RJ, Bezdek JC (1993) Switching regression models and fuzzy clustering. IEEE Trans Fuzzy Syst 1(3):195–204

    Article  Google Scholar 

  18. Hu X, Cao D, Egardt B (2018) Condition monitoring in advanced battery management systems: moving horizon estimation using a reduced electrochemical model. IEEE/ASME Trans Mechatron 23(1):167–178

    Article  Google Scholar 

  19. IEA (2017) The future of trucks implications for energy and the environment. Éditions OCDE, Paris

    Google Scholar 

  20. IEA (2018) Global EV outlook 2018. Éditions OCDE, Paris

    Google Scholar 

  21. ITF (2017) \(ITF\) transport outlook 2017. Éditions OCDE, Paris. https://doi.org/10.1787/9789282108000-en

    Google Scholar 

  22. Jabeur Telmoudi A, Soltani M, Chaouech L, Chaari A (2018) Parameter estimation of nonlinear systems using a robust possibilistic c-regression model algorithm. Proc Inst Mech Eng Part I J Syst Control Eng. https://doi.org/10.1177/0959651818756246

    Article  MATH  Google Scholar 

  23. Karami A, Rezaei E, Shahhosseni M, Aghakhani M (2012) Fuzzy logic to predict the heat transfer in an air cooler equipped with different tube inserts. Int J Therm Sci 53:141–147

    Article  Google Scholar 

  24. Karami A, Rezaei E, Shahhosseni M, Jafari SF (2011) Fuzzy logic modeling of heat transfer in an air cooler equipped with butterfly insert. Int J Model Optim 1(3):258–262

    Article  Google Scholar 

  25. Karami A, Yousefi T, Rezaei E, Amiri A (2012) Modeling of the free convection heat transfer from an isothermal horizontal cylinder in a vertical channel via the fuzzy logic. Int J Multiphys 6:7–16

    Article  Google Scholar 

  26. Kiseak J, Stehlik M (2008) Euidistant and d-optimal designs for parameters of ornstein-uhlenbeck process. Stat Probab Lett 78:1388–1396. https://doi.org/10.1016/j.spl.2007.12.012

    Article  MATH  Google Scholar 

  27. Korda N, Szorenyi B, Li S (2016) Distributed clustering of linear bandits in peer to peer networks. CoRR arXiv:1604.07706, pp 1–15

  28. Krishnapuram R, Keller JM (1996) The possibilistic c-means algorithm: insights and recommendations. IEEE Trans Fuzzy Syst 4(3):385–393

    Article  Google Scholar 

  29. Krzywanski J, Wesolowska M, Blaszczuk A, Majchrzak A, Komorowski M, Nowak W (2016) The non-iterative estimation of bed-to-wall heat transfer coefficient in a CFBC by fuzzy logic methods. Procedia Eng 157:66–71. https://doi.org/10.1016/j.proeng.2016.08.339

    Article  Google Scholar 

  30. Krzywanski J, Wesolowska M, Blaszczuk A, Majchrzak A, Komorowski M, Nowak W (2018) Fuzzy logic and bed-to-wall heat transfer in a large-scale CFBC. Int J Numer Methods Heat Fluid Flow 28:254–266

    Article  Google Scholar 

  31. Lahsini M, ben Belgacem Y, Khaldi C, Lamloumi J (2018) Kinetics and corrosion properties of the lay2Ni9 alloy used as anode for nickel–metal hydride batteries. In: Proceedings of 9th international renewable energy congress (IREC), pp 1–5

  32. Li S, Chen W, Leung KS (2019) Improved algorithm on online clustering of bandits. arXiv:1902.09162

  33. Liu Y, Pan H, Gao M, Wang Q (2011) Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J Mater Chem 21:4743–4755

    Article  Google Scholar 

  34. Mendez E, Billings SA (2001) An alternative solution to the model structure selection problem. IEEE Trans Syst Man Cybern A Syst Hum 31(6):597–608

    Article  Google Scholar 

  35. Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3:370–379. https://doi.org/10.1109/91.413225

    Article  Google Scholar 

  36. Shen P, Ouyang M, Lu L, Li J, Feng X (2018) The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles. IEEE Trans Veh Technol 67(1):92–103

    Article  Google Scholar 

  37. Soltani M, Belgacem YB, Telmoudi AJ, Chaari A (2018) Parameter identification and state of health evaluation for nickel–metal hydride batteries based on an improved clustering algorithm. In: 2018 5th international conference on control, decision and information technologies (CoDIT). IEEE, pp 128–133

  38. Soltani M, Telmoudi AJ, Chaouech L, Ali M, Chaari A (2019) Design of a robust interval-valued type-2 fuzzy c-regression model for a nonlinear system with noise and outliers. Soft Comput 23(15):6125–6134

    Article  MATH  Google Scholar 

  39. Soltani M, Telmoudi AJ, Chaouech L, Chaari A (2017) Robust possibilistic c-regression models algorithm. In: 2017 4th international conference on control, decision and information technologies (CoDIT), pp 0466–0470

  40. Song Y, Liu D, Yang C, Peng Y (2017) Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery. Microelectron Reliab 75:142–153

    Article  Google Scholar 

  41. Yang D, Wang Y, Pan R, Chen R, Chen Z (2017) A neural network based state-of-health estimation of lithium-ion battery in electric vehicles. Energy Procedia 105:2059–2064

    Article  Google Scholar 

  42. Yassine BB, Chokri K, Jilani L (2017) The effect of the discharge rate on the electrochemical properties of Ab3-type hydrogen storage alloy as anode in nickel–metal hydride batteries. Int J Hydrog Energy 42(17):12797–12807

    Article  Google Scholar 

  43. Zhang LF, Zhu QM, Longden A (2009) A correlation-test-based validation procedure for identified neural networks. IEEE Trans Neural Netw 20:1–13. https://doi.org/10.1109/tnn.2008.2003223

    Article  Google Scholar 

  44. Zhang Y, Liu D, Yu J, Peng Y, Peng X (2017) EMA remaining useful life prediction with weighted bagging GPR algorithm. Microelectron Reliab 75:253–263

    Article  Google Scholar 

  45. Zou W, Li C, Zhang N (2018) A T–S fuzzy model identification approach based on a modified inter type-2 Frcm algorithm. IEEE Trans Fuzzy Syst 26(3):1104–1113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moez Soltani.

Ethics declarations

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, M., Telmoudi, A.J., Belgacem, Y.B. et al. Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models. Neural Comput & Applic 32, 11361–11371 (2020). https://doi.org/10.1007/s00521-019-04631-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04631-w

Keywords

Navigation