[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A new hybrid algorithm to solve bound-constrained nonlinear optimization problems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The goal of this work is to propose a hybrid algorithm called real-coded self-organizing migrating genetic algorithm by combining real-coded genetic algorithm (RCGA) and self-organizing migrating algorithm (SOMA) for solving bound-constrained nonlinear optimization problems having multimodal continuous functions. In RCGA, exponential ranking selection, whole-arithmetic crossover and non-uniform mutation operations have been used as different operators where as in SOMA, a modification has been done. The performance of the proposed hybrid algorithm has been tested by solving a set of benchmark optimization problems taken from the existing literature. Then, the simulated results have been compared numerically and graphically with existing algorithms. In the graphical comparison, a modified performance index has been proposed. Finally, the proposed algorithm has been applied to solve two real-life problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Deep K, Thakur M (2007) A new mutation operator for real coded genetic algorithms. Appl Math Comput 193(1):211–230

    MathSciNet  MATH  Google Scholar 

  2. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge

    Google Scholar 

  3. Bäck T, Fogel DB, Michalewicz Z (1997) Handbook of evolutionary computation. CRC Press, Boca Raton

    MATH  Google Scholar 

  4. Koziel S, Michalewicz Z (1999) Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol Comput 7(1):19–44

    Google Scholar 

  5. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  6. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549

    MathSciNet  MATH  Google Scholar 

  7. Glover F (1989) Tabu search-part I. ORSA J Comput 1(3):190–206

    MATH  Google Scholar 

  8. Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8

  9. Klein CE, Mariani VC, dos Santos Coelho L (2018) Cheetah based optimization algorithm: a novel swarm intelligence paradigm. In: 26th European Symposium on Artificial Neural Networks, ESANN 2018, Bruges, Belgium, April 25–27, 2018

  10. Klein CE, dos Santos Coelho L (2018) Meerkats-inspired algorithm for global optimization problems. In: 26th European Symposium on Artificial Neural Networks, ESANN 2018, Bruges, Belgium, April 25–27, 2018

  11. Mortazavi A, Toğan V, Nuhoğlu A (2018) Interactive search algorithm: a new hybrid metaheuristic optimization algorithm. Eng Appl Artif Intell 71:275–292

    Google Scholar 

  12. Shayanfar H, Gharehchopogh FS (2018) Farmland fertility: a new metaheuristic algorithm for solving continuous optimization problems. Appl Soft Comput 71:728–746

    Google Scholar 

  13. Shadravan S, Naji HR, Bardsiri VK (2019) The Sailfish Optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34

    Google Scholar 

  14. de Vasconcelos Segundo EH, Mariani VC, dos Santos Coelho L (2019) Design of heat exchangers using Falcon Optimization Algorithm. Appl Therm Eng 156:119–144

    Google Scholar 

  15. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Co., Inc., Cambridge

    MATH  Google Scholar 

  16. Michalewicz Z (2013) Genetic algorithms + data structures = evolution programs. Springer, Berlin

    MATH  Google Scholar 

  17. Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  18. Sakawa M (2012) Genetic algorithms and fuzzy multiobjective optimization, vol 14. Springer, Berlin

    MATH  Google Scholar 

  19. Sawyerr BA, Ali MM, Adewumi AO (2011) A comparative study of some real-coded genetic algorithms for unconstrained global optimization. Optim Methods Softw 26(6):945–970

    MathSciNet  MATH  Google Scholar 

  20. Toledo CFM, Oliveira L, França PM (2014) Global optimization using a genetic algorithm with hierarchically structured population. J Comput Appl Math 261:341–351

    MathSciNet  MATH  Google Scholar 

  21. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  22. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  23. Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems. Appl Soft Comput 30:58–71

    Google Scholar 

  24. Wu X, Zhou Y, Lu Y (2017) Elite opposition-based water wave optimization algorithm for global optimization. In: Mathematical problems in engineering

  25. Chen H, Xu Y, Wang M, Zhao X (2019) A balanced whale optimization algorithm for constrained engineering design problems. Appl Math Model 71:45–59

    MathSciNet  MATH  Google Scholar 

  26. Tejani GG, Savsani VJ, Patel VK, Mirjalili S (2019) An improved heat transfer search algorithm for unconstrained optimization problems. J Comput Des Eng 6(1):13–32

    Google Scholar 

  27. Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34

    Google Scholar 

  28. Zelinka I, Lampinen J (2000) SOMA—self-organizing migrating algorithm, Nostradamus. In: Proceedings of the 3rd international conference on prediction and nonlinear dynamic, Zlin, Czech Republic

  29. Nolle L, Zelinka I, Hopgood AA, Goodyear A (2005) Comparison of an self-organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning. Adv Eng Softw 36(10):645–653

    Google Scholar 

  30. Deep K, Dipti (2007) A new hybrid self organizing migrating genetic algorithm for function optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp 2796–2803, Singapore

  31. Deep K, Dipti (2008) Self-organizing migrating genetic algorithm for constrained optimization. Appl Math Comput 198(1):237–250

    MathSciNet  MATH  Google Scholar 

  32. Coelho LdS (2009) Self-organizing migration algorithm applied to machining allocation of clutch assembly. Math Comput Simul 80(2):427–435

    MathSciNet  MATH  Google Scholar 

  33. Coelho LdS, Mariani VC (2010) An efficient cultural self-organizing migrating strategy for economic dispatch optimization with valve-point effect. Energy Convers Manag 51(12):2580–2587

    Google Scholar 

  34. Senkerik R, Zelinka I, Davendra D, Oplatkova Z (2010) Utilization of SOMA and differential evolution for robust stabilization of chaotic Logistic equation. Comput Math Appl 60(4):1026–1037

    MathSciNet  MATH  Google Scholar 

  35. Davendra D, Zelinka I (2016) Self-organizing migrating algorithm. In: New optimization techniques in engineering. Springer, Cham

    Google Scholar 

  36. Shi XH, Wan LM, Lee HP, Yang XW, Wang LM, Liang YC (2003) An improved genetic algorithm with variable population-size and a PSO-GA based hybrid evolutionary algorithm. In: Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), vol 3. IEEE, pp 1735–1740

  37. Marjani A, Shirazian S, Asadollahzadeh M (2018) Topology optimization of neural networks based on a coupled genetic algorithm and particle swarm optimization techniques (c-GA–PSO-NN). Neural Comput Appl 29(11):1073–1076

    Google Scholar 

  38. Choudhary A, Kumar M, Gupta MK, Unune DK, Mia M (2019) Mathematical modeling and intelligent optimization of submerged arc welding process parameters using hybrid PSO-GA evolutionary algorithms. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04404-5

    Article  Google Scholar 

  39. Fan SKS, Liang YC, Zahara E (2006) A genetic algorithm and a particle swarm optimizer hybridized with Nelder–Mead simplex search. Comput Ind Eng 50(4):401–425

    Google Scholar 

  40. Deep K, Singh D (2016) Optimization of directional overcurrent relay times using C-SOMGA. In: Self-organizing migrating algorithm. Springer, Cham, pp 167–186

  41. Deep K, Das KN (2008) Quadratic approximation based hybrid genetic algorithm for function optimization. Appl Math Comput 203(1):86–98

    MATH  Google Scholar 

  42. Bharati (1994) Controlled random search optimization technique and their applications. Ph.D. Thesis, Department of Mathematics, University of Roorkee, Roorkee, India

  43. Mohan C, Nguyen HT (1999) A controlled random search technique incorporating the simulated annealing concept for solving integer and mixed integer global optimization problems. Comput Optim Appl 14(1):103–132

    MathSciNet  MATH  Google Scholar 

  44. Sherwood TK (1963) A course in process design. The MIT Press, Cambridge

    Google Scholar 

  45. Beightler CS, Phillips DT (1976) Applied geometric programming. Wiley, Hoboken

    MATH  Google Scholar 

  46. Jen FC, Pegels CC, Dupuis TM (1968) Optimal capacities of production facilities. Manag Sci 14(10):B-573

    Google Scholar 

  47. Janikow CZ, Michalewicz Z (1991) An experimental comparison of binary and floating point representations in genetic algorithms. In: ICGA, pp 31–36

  48. Zelinka I, Lampinen J, Nolle L (2001) On the theoretical proof of convergence for a class of SOMA search algorithms. In: Proceedings of 7th international Mendel conference on soft computing, Brno, Czech Republic, pp 103–110

  49. Zelinka I (2004) SOMA—self-organizing migrating algorithm. In: New optimization techniques in engineering. Springer, Berlin, pp 167–217

  50. Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optim 31(4):635–672

    MathSciNet  MATH  Google Scholar 

  51. Jamil M, Yang X-S (2013) A literature survey of benchmark functions for global optimisation problems. Int J Math Model Numer Optim 4(2):150–194

    MATH  Google Scholar 

  52. Surjanovic S, Bingham D (2016) Virtual library of simulation experiments: test functions and datasets. Retrieved September 25 from http://www.sfu.ca/~ssurjano

  53. Chelouah R, Siarry P (2000) Tabu search applied to global optimization. Eur J Oper Res 123(2):256–270

    MathSciNet  MATH  Google Scholar 

  54. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Google Scholar 

  55. Zhang G, Lu H (2006) Hybrid real-coded genetic algorithm with quasi-simplex technique. Int J Comput Sci Netw Secur 6(10):246–255

    Google Scholar 

  56. Pant M, Thangaraj R, Singh VP, Abraham A (2008) Particle swarm optimization using Sobol mutation. In: 2008 first international conference on emerging trends in engineering and technology. IEEE, pp 367–372

  57. Ali MM, Kaelo P (2008) Improved particle swarm algorithms for global optimization. Appl Math Comput 196(2):578–593

    MathSciNet  MATH  Google Scholar 

  58. Ali MM, Gabere MN (2010) A simulated annealing driven multi-start algorithm for bound constrained global optimization. J Comput Appl Math 233(10):2661–2674

    MathSciNet  MATH  Google Scholar 

  59. Pant M, Thangaraj R, Grosan C, Abraham A (2008) Hybrid differential evolution-particle swarm optimization algorithm for solving global optimization problems. In: 2008 third international conference on digital information management. IEEE, pp 18–24

  60. Deep K (2011) The particle swarm optimization for real life optimization problems. In: Proceeding of international conference on advances in modeling, optimization and computing (AMOC), pp 723–732

  61. Hellinckx LJ, Rijckaert MJ (1972) Optimal capacities of production facilities An application of geometric programming. Can J Chem Eng 50(1):148–150

    Google Scholar 

  62. Zaiontz C. Real statistics using Excel. http://www.real-statistics.com/non-parametric-tests/wilcoxon-rank-sum-test/

  63. Bellera CA, Julien M, Hanley JA (2010) Normal approximations to the distributions of the Wilcoxon statistics: accurate to what N? Graphical insights. J Stat Educ 18(2):1–17

    Google Scholar 

  64. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  65. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18

    Google Scholar 

  66. García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180(10):2044–2064

    Google Scholar 

Download references

Acknowledgements

The authors are very much thankful to the anonymous reviewers for their constructive comments. The third and fifth author would like to acknowledge the finical support provided by WBDSTBT (429(Sanc)/ST/P/S&T/16G-23/2018) for continuing the research. The first author is thankful to Mrs. Kabita Garai, Dakshin Changrachak Sukanta Vidyapith, Moyna, Purba Medinipur, West Bengal, India-721644 and Dr. Navonil Bose, Department of Physics, Supreme Knowledge Foundation Group of Institutions, Mankundu, Hooghly, West Bengal, India-712139 for their kind cooperation and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Shaikh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The detailed description of 25 problems that have been used in this paper is given below:

  1. 1.

    Ackley’s problem:

    $$\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{1} ({\mathbf{x}}) = - 20\exp \left( { - 0.2\sqrt {\frac{1}{n}\sum\limits_{i = 1}^{n} {x_{i}^{2} } } } \right) - \exp \left( {\frac{1}{n}\sum\limits_{i = 1}^{n} {\cos (2\pi x_{i} )} } \right) + 20 + e,$$

    where \(- 32 \le x_{i} \le 32\), with the known global optimum \(f_{1} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = 0\) for \(i = 1,2, \ldots ,n.\)

  2. 2.

    Cosine mixture problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{2} ({\mathbf{x}}) = \sum\limits_{i = 1}^{n} {x_{i}^{2} } - 0.1\sum\limits_{i = 1}^{n} {\cos (5\pi x_{i} )}\), \({\text{where }}\,\, - 1 \le x_{i} \le 1\), with the known global optimum \(f_{2} ({\mathbf{x}}^{*} ) = - \,0.1\,n \,\) at \(x_{i}^{*} = 0\) for \(i = 1,2, \ldots ,n.\)

  3. 3.

    Exponential problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{3} ({\mathbf{x}}) = - \exp \left( { - 0.5\sum\limits_{i = 1}^{n} {x_{i}^{2} } } \right)\),\({\text{where }}\, - 1 \le x_{i} \le 1\), with the known global optimum \(f_{3} ({\mathbf{x}}^{*} ) = - 1 \,\) at \(x_{i}^{*} = 0\) for \(i = 1,2, \ldots ,n.\)

  4. 4.

    Griewank problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{4} ({\mathbf{x}}) = 1 + \frac{1}{4000}\sum\limits_{i = 1}^{n} {x_{i}^{2} } - \prod\limits_{i = 1}^{n} {\cos \left( {\frac{{x_{i} }}{\sqrt i }} \right)}\), \({\text{where }}\, - 600 \le x_{i} \le 600\), with the known global optimum \(f_{4} ({\mathbf{x}}^{*} ) = 0 \,\) at \(x_{i}^{*} = 0\) for \(i = 1,2, \ldots ,n.\)

  5. 5.

    Levy and Montalvo problem 1:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{5} ({\mathbf{x}}) = \frac{\pi }{n}\left( {10\sin^{2} (\pi y_{1} ) + \sum\limits_{i = 1}^{n - 1} {(y_{i} - 1)^{2} } \left[ {1 + 10\sin^{2} \left( {\pi y_{i + 1} } \right)} \right] + (y_{n} - 1)^{2} } \right)\)\({\text{where }}\,y_{i} = 1 + \frac{1}{4}(x_{i} + 1),\,\,\, - 10 \le x_{i} \le 10\), with the known global optimum \(f_{5} ({\mathbf{x}}^{*} ) = 0 \,\) at \(x_{i}^{*} = 1\) for \(i = 1,2, \ldots ,n.\)

  6. 6.

    Levy and Montalvo problem 2:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{6} ({\mathbf{x}}) = 0.1\left( {\sin^{2} (3\pi x_{1} ) + \sum\limits_{i = 1}^{n - 1} {(x_{i} - 1)^{2} } \left[ {1 + \sin^{2} (3\pi x_{i + 1} )} \right] + (x_{n} - 1)^{2} \left[ {1 + \sin^{2} (2\pi x_{n} )} \right]} \right)\)\({\text{where }}\,\, - 5 \le x_{i} \le 5\), with the known global optimum \(f_{6} ({\mathbf{x}}^{*} ) = 0 \,\) at \(x_{i}^{*} = 1\) for \(i = 1,2, \ldots ,n.\)

  7. 7.

    Paviani problem:

    \(\mathop {\hbox{min} }\limits_{x} f_{7} (x) = \sum\limits_{i = 1}^{10} {\left[ {(1n(x_{i} - 2))^{2} + (1n(10 - x_{i} ))^{2} } \right] - \left( {\prod\limits_{i = 1}^{10} {x_{i} } } \right)^{0.2} } ,\;{\text{where }}2 \le x_{i} \le 10\) with the known global optimum \(f_{7} ({\mathbf{x}}^{*} ) = - 45.778 \,\) at \(x_{i}^{*} = 9.351\) for \(i = 1,2, \ldots ,n.\)

  8. 8.

    Rastrigin problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{8} ({\mathbf{x}}) = 10n + \sum\limits_{i = 1}^{n} {\left[ {x_{i}^{2} - 10\cos (2\pi x_{i} )} \right]}\), \({\text{where }} - 5.12 \le x_{i} \le 5.12\), with the known global optimum \(f_{8} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = 0\) for \(i = 1,2, \ldots ,n.\)

  9. 9.

    Rosenbrock problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{9} ({\mathbf{x}}) = \sum\limits_{i = 1}^{n - 1} {\left[ {100(x_{i + 1} - x_{i}^{2} )^{2} + (x_{i} - 1)^{2} } \right]}\), \({\text{where }} - 30 \le x_{i} \le 30\), with the known global optimum \(f_{9} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = 1\) for \(i = 1,2, \ldots ,n.\)

  10. 10.

    Schwefel problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{10} ({\mathbf{x}}) = 418.9829n - \sum\limits_{i = 1}^{n} {\left[ {x_{i} \sin (\sqrt {\left| {x_{i} } \right|} )} \right]\,}\), \({\text{where }} - 500 \le x_{i} \le 500\), with the known global optimum \(f_{10} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = 420.97\) for \(i = 1,2, \ldots ,n.\)

  11. 11.

    Sinusoidal problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{11} ({\mathbf{x}}) = - \left[ {2.5\prod\limits_{i = 1}^{n} {\sin \left( {x_{i} - \frac{\pi }{6}} \right)} + \prod\limits_{i = 1}^{n} {\sin \left( {5\left( {x_{i} - \frac{\pi }{6}} \right)} \right)} } \right]\), \({\text{where }}\,\,0 \le x_{i} \le \pi\), with the known global optimum \(f_{11} ({\mathbf{x}}^{*} ) = - 3.5\) at \(x_{i}^{*} = 2\pi /3\) for \(i = 1,2, \ldots ,n\).

  12. 12.

    Zakharov’s problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{12} ({\mathbf{x}}) = \sum\limits_{i = 1}^{n} {x_{i}^{2} } + \left( {\sum\limits_{i = 1}^{n} {\frac{i}{2}x_{i} } } \right)^{2} + \left( {\sum\limits_{i = 1}^{n} {\frac{i}{2}x_{i} } } \right)^{4}\), \({\text{where}} - 5.12 \le x_{i} \le 5.12\), with the known global optimum \(f_{12} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = 0\) for \(i = 1,2, \ldots ,n\)

  13. 13.

    Sphere problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{13} ({\mathbf{x}}) = \sum\limits_{i = 1}^{n} {x_{i}^{2} }\), \({\text{where}} - 5.12 \le x_{i} \le 5.12\), with the known global optimum \(f_{13} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = 0\) for \(i = 1,2, \ldots ,n.\)

  14. 14.

    Axis parallel hyper ellipsoid problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{14} ({\mathbf{x}}) = \sum\limits_{i = 1}^{n} {ix_{i}^{2} }\), \({\text{where}} - 5.12 \le x_{i} \le 5.12\), with the known global optimum \(f_{14} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = 0\) for \(i = 1,2, \ldots ,n.\)

  15. 15.

    Schwefel double sum problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{15} ({\mathbf{x}}) = \sum\limits_{i = 1}^{n} {\left( {\sum\limits_{j = 1}^{i} {x_{i} } } \right)^{2} }\), \({\text{where }}\,\, - 65.536 \le x_{i} \le 65.536\), with the known global optimum \(f_{15} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = 0\) for \(i = 1,2, \ldots ,n\).

  16. 16.

    Schwefel problem 4:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{16} ({\mathbf{x}}) = \mathop {\hbox{min} }\limits_{i} \{ \,\left| {x_{i} } \right|,\,\,1 \le i \le n\}\), \({\text{where}} - 100 \le x_{i} \le 100\), with the known global optimum \(f_{16} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = 0\) for \(i = 1,2, \ldots ,n.\)

  17. 17.

    De-Jong problem with noise:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{17} ({\mathbf{x}}) = \sum\limits_{i = 1}^{n} {x_{i}^{4} + {\text{rand}}\, (0,\,\,1)}\), \({\text{where }} - 10 \le x_{i} \le 10\), with the known global optimum \(f_{17} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = 0\) for \(i = 1,2, \ldots ,n.\)

  18. 18.

    Ellipsoidal problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{18} ({\mathbf{x}}) = \sum\limits_{i = 1}^{n} {(x_{i} - i)^{2} }\), \({\text{where }}\, - n \le x_{i} \le n\), with the known global optimum \(f_{18} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = i\) for \(i = 1,2, \ldots ,n.\)

  19. 19.

    Generalized penalized problem 1:

    $$\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{19} ({\mathbf{x}}) = \frac{\pi }{n}\left( {10\sin^{2} (\pi y_{1} ) + \sum\limits_{i = 1}^{n - 1} {(y_{i} - 1)^{2} } \left[ {1 + 10\sin^{2} (\pi y_{i + 1} )} \right] + (y_{n} - 1)^{2} } \right) + \sum\limits_{i = 1}^{n} u (x_{i} ,\,10,\,100,\,4),$$

    \({\text{where}}\;y_{i} = 1 + \frac{1}{4}(x_{i} + 1)\,\,{\text{and}}\,\, - 10 \le x_{i} \le 10\), with the known global optimum \(f_{19} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = 1\) for \(i = 1,2, \ldots ,n.\)

  20. 20.

    Generalized penalized problem 2:

    $$\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{20} ({\mathbf{x}}) = 0.1\left( {\sin^{2} (3\pi x_{1} ) + \sum\limits_{i = 1}^{n - 1} {(x_{i} - 1)^{2} } \left[ {1 + \sin^{2} (3\pi x_{i + 1} )} \right] + (x_{n} - 1)^{2} \left[ {1 + \sin^{2} (2\pi x_{n} )} \right]} \right) + \sum\limits_{i = 1}^{n} {u(x_{i} ,\,10,\,100,\,4)} ,\,\,\,{\text{where }}\, - 5 \le x_{i} \le 5,$$

    with the known global optimum \(f_{20} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = 1\) for \(i = 1,2, \ldots ,n.\)

    In problems number 19 and 20, the penalty function u is given by the following expression:

    $$u(x,\,a,\,k,\,m) = \left\{ {\begin{array}{*{20}l} {k(x - a)^{m} ,} \hfill & {{\text{if}}\;x > a,} \hfill \\ { - k(x - a)^{m} ,} \hfill & {{\text{if}}\;x < - a,} \hfill \\ {0,} \hfill & {{\text{otherwise}} .} \hfill \\ \end{array} } \right.$$
  21. 21.

    Easom problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{21} ({\mathbf{x}}) = - \left( {\mathop \prod \limits_{i = 1}^{n} \cos \,(x_{i} )} \right) \times \left( {e^{{ - \sum\limits_{i = 1}^{n} {(x_{i} - \pi )^{2} } }} } \right)\), \({\text{where }}\, - 10 \le x_{i} \le 10\), with the known global optimum \(f_{21} ({\mathbf{x}}^{*} ) = - 1\) at \(x_{i}^{*} = \pi\) for \(i = 1,2, \ldots ,n.\)

  22. 22.

    Trid problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{22} ({\mathbf{x}}) = \sum\limits_{i = 1}^{n} {(x_{i} - 1)^{2} } - \sum\limits_{i = 2}^{n} {x_{i} x_{i - 1} }\), \({\text{where }}\,\, - n^{2} \le x_{i} \le n^{2}\), with the known global optimum \(f_{22} ({\mathbf{x}}^{*} ) = - \frac{n(n + 4)(n - 1)}{6}\, \,\) at \(x_{i}^{*} = i\,(n + 1 - i)\) for \(i = 1,2, \ldots ,n.\)

  23. 23.

    Dixon and Price problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{23} ({\mathbf{x}}) = \,(x_{1} - 1)^{2} + \,\sum\limits_{i = 2}^{n} {i\,(2x_{i}^{2} - x_{i - 1} )^{2} }\), \({\text{where }} - 10 \le x_{i} \le 10\), with the known global optimum \(f_{23} ({\mathbf{x}}^{*} ) = 0\) at \(x_{i}^{*} = f\left( {2^{{\left( {\frac{{2^{i} - 2}}{{2^{i} }}} \right)}} } \right)\) for \(i = 1,2, \ldots ,n.\)

  24. 24.

    Michalewicz’s problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{24} ({\mathbf{x}}) = - \sum\limits_{i = 1}^{n} {\sin (x_{i} )} \left( {\sin \left( {\frac{{ix_{i}^{2} }}{\pi }} \right)} \right)^{2m}\), \(\,\,{\text{where }}\,0 \le x_{i} \le \pi\) and \(m = 10\,\), with the known global optimum \(f_{24} ({\mathbf{x}}^{*} ) = - 9.6602\) for \(i = 1,2, \ldots ,n.\)

  25. 25.

    Shekel 10 problem:

    \(\mathop {\hbox{min} }\limits_{{\mathbf{x}}} f_{25} ({\mathbf{x}}) = - \sum\limits_{j = 1}^{m} {\left[ {\sum\limits_{i = 1}^{4} {(x_{i} - a_{ij} )^{2} + c_{j} } } \right]}^{ - 1}\), \(\,\,{\text{where }}\,0 \le x_{i} \le 10\) and \(m = 10\),

    $$a_{ij} = \left[ {\begin{array}{*{20}c} 4 & 1 & 8 & 6 & 3 & 2 & 5 & 8 & 6 & 7 \\ 4 & 1 & 8 & 6 & 7 & 9 & 5 & 1 & 2 & {3.6} \\ 4 & 1 & 8 & 6 & 3 & 2 & 3 & 8 & 6 & 7 \\ 4 & 1 & 8 & 6 & 7 & 9 & 3 & 1 & 2 & {3.6} \\ \end{array} } \right]$$

    \({\text{and}}\,\,c_{j} = [0\begin{array}{*{20}c} {.1} & {0.2} & {0.2} & {0.4} & {0.4} & {0.6} & {0.3} & {0.7} & {0.5} & {0.5} \\ \end{array} ]^{\rm T}\), with the known global optimum \(f_{25} ({\mathbf{x}}^{*} ) = - 10.5364\) at \(x_{i}^{*} = 4\), for \(i = 1,2,3,4.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duary, A., Rahman, M.S., Shaikh, A.A. et al. A new hybrid algorithm to solve bound-constrained nonlinear optimization problems. Neural Comput & Applic 32, 12427–12452 (2020). https://doi.org/10.1007/s00521-019-04696-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04696-7

Keywords

Navigation