Abstract
Automated signature generation for Intrusion Detection Systems (IDSs) for proactive security of networks is a promising area of research. An IDS monitors a system or activities of a network for detecting any policy violations or malicious actions and produces reports to the management system. Numerous solutions have been proposed by various researchers so far for intrusion detection in networks. However, the need to efficiently identifying any intrusion in the network is on the rise as the network attacks are increasing exponentially. This research work proposes a deep learning-based system for hybrid intrusion detection and signature generation of unknown web attacks referred as D-Sign. D-Sign is capable of successfully detecting and generating attack signatures with high accuracy, sensitivity and specificity. It has been for attack detection and signature generation of web-based attacks. D-Sign has reported significantly low False Positives and False Negatives. The experimental results demonstrated that the proposed system identifies the attacks proactively than other state-of-the-art approaches and generates signatures effectively thereby causing minimum damage due to network attacks.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kaur S, Singh M (2013) Automatic attack signature generation systems: a review. IEEE Secur Priv 11(6):54–61
Kreibich C, Crowcroft J (2004) Honeycomb: creating intrusion detection signatures using honeypots. ACM SIGCOMM Comput Commun Rev 34(1):51–56
Kim HA, Karp B (2004) Autograph: toward automated, distributed worm signature detection. In: 13th usenix security symposium (Security 2004), San Diego, CA, pp 271–286
Singh S, Eitan C, Varghese G, Savage S (2004) Automated worm fingerprinting. In: 6th conference on symposium on operating systems design and implementation (OSDI). USENIX Association, Berkeley, CA, USA, pp 45–60
Singh S, Estan C, Varghese G, Savage S (2003) Earlybird system for real-time detection of unknown worms. Department of Computer Science and Engineering, University of California, San Diego
Wang K, Stolfo SJ (2004) Anomalous payload-based network intrusion detection. In: Jonsson E, Valdes A, Almgren M (eds) Recent advances in intrusion detection, vol 3224. Springer, Berlin, Heidelberg, pp 203–222
Liang Z, Sekar R (2005) Automatic generation of buffer overflow attack signatures: an approach based on program behavior models. In: 21st annual computer security applications conference, Tucson, Arizona, USA, pp 1–10
Newsome J, Karp B, Song D (2005) Polygraph: automatically generating signatures for polymorphic worm. In: IEEE symposium on security and privacy. IEEE Press, Oakland, pp 226–241
Yegneswaran V, Giffin JT, Barford P, Jha S (2005) An architecture for generating semantic aware signatures. In: USENIX security symposium, pp 97–112
Tang Y, Chen S (2005) Defending against internet worms: a signature based approach. In: IEEE INFOCOM’2005. IEEE Press, Miami, pp 1384–1394
Costa M, Crowcroft J, Castro M, Rowstron A, Zhou L, Zhang L, Barham P (2005) Vigilante: end-to-end containment of Internet worms. In: 20th ACM symposium on operating systems principles (SOSP’05), New York, USA, pp 133–147
Portokalidis G, Slowinska A, Bos H (2006) Argos: an emulator for fingerprinting zero-day attack. In: International conference of ACM SIGOPS EUROSYS, Leuven, Belgium, pp 15–28
Li Z, Sanghi M, Chen Y, Kao M, Chavez B (2006) Hamsa: fast signature generation for zero-day polymorphic worms with provable attack resilience. In: IEEE symposium on security and privacy (S&P’06). IEEE Computer Society, Washington, pp 32–47
Mohammed MMZE, Chan HA, Ventura N (2008) Honeycyber: automated signature generation for zero-day polymorphic worms. In: IEEE military communications conference (MILCOM), San Diego, CA, pp 1–6
Portokalidis G, Bos H (2008) Eudaemon: involuntary and on-demand emulation against zero-day exploit. In: 3rd international conference on ACM SIGOPS/EuroSys European conference on computer systems, New York, USA, pp 287–299
Griffin K, Schneider S, Hu X, Chiueh T (2009) Automatic generation of string signatures for malware detection. In: 12th international symposium on recent advances in intrusion detection. Springer, Berlin, pp 101–120
Kim I, Kim D, Choi Y, Kang K, Oh J, Jang J (2009) Validation methods of suspicious network flows for unknown attack detection. Int J Comput 3(1):104–114
Werner T, Fuchs C, Gerhards-Padilla E, Martini P (2009) Nebula-generating syntactical network intrusion signatures. In: 2009 4th international conference on malicious and unwanted software (MALWARE). IEEE, pp 31–38
Tahan G, Glezer C, Elovici Y, Rokach L (2010) Auto-Sign: an automatic signature generator for high-speed malware filtering devices. J Comput Virol 6(2):91–103
Shabtai A, Menahem E, Elovici Y (2011) F-sign: automatic, function-based signature generation for malware. IEEE Trans Syst Man Cybern Part C Appl Rev 41(4):494–508
Maimó LF, Gómez ÁLP, Clemente FJG, Pérez MG, Pérez GM (2018) A self-adaptive deep learning-based system for anomaly detection in 5G networks. IEEE Access 6:7700–7712
Wang W, Sheng Y, Wang J, Zeng X, Ye X, Huang Y, Zhu M (2018) HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access 6:1792–1806
Yin C, Zhu Y, Fei J, He X (2017) A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 5:21954–21961
Mohammadi S, Namadchian A (2017) A new deep learning approach for anomaly base IDS using memetic classifier. Int J Comput Commun Control 12(5):677–688
Yuan X, Li C, Li X (2017) DeepDefense: identifying DDoS attack via deep learning. In: 2017 IEEE international conference on smartcomputing (SMARTCOMP). IEEE, pp 1–8
Azzouni A, Pujolle G (2017) A long short-term memory recurrent neural network framework for network traffic matrix prediction. arXiv preprint arXiv:1705.05690
Kim J, Shin N, Jo SY, Kim SH (2017) Method of intrusion detection using deep neural network. In: 2017 IEEE international conference on big data and smart computing (BigComp). IEEE, pp 313–316
Tang TA, Mhamdi L, McLernon D, Zaidi SAR, Ghogho M (2016) Deep learning approach for network intrusion detection in software defined networking. In: 2016 international conference on wireless networks and mobile communications (WINCOM). IEEE, pp 258–263
Sheikhan M, Jadidi Z, Farrokhi A (2012) Intrusion detection using reduced-size RNN based on feature grouping. Neural Comput Appl 21(6):1185–1190
Ma T, Wang F, Cheng J, Yu Y, Chen X (2016) A hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networks. Sensors 16(10):1701
Shahriar H, Bond W (2017) Towards an attack signature generation framework for intrusion detection systems. In: Dependable, autonomic and securecomputing, 5th international conference on pervasive intelligence and computing, 3rd international conference on bigdata intelligence and computing and cyber science and technology congress(DASC/PiCom/DataCom/CyberSciTech), 2017 IEEE 15th international. IEEE, pp 597–603
Choi S, Lee J, Choi Y, Kim J, Kim I (2016) Hierarchical network signature clustering and generation. In: 2016 international conference on information and communication technology convergence (ICTC). IEEE, pp 1191–1193
Lee S, Kim S, Lee S, Yoon H, Lee D, Choi J, Lee JR (2016) LARGen: automatic signature generation for Malwares using latent Dirichlet allocation. IEEE Trans Depend Secure Comput 15(5):771–783
Wang Y, Xiang Y, Zhou W, Yu S (2012) Generating regular expression signatures for network traffic classification in trusted network management. J Netw Comput Appl 35(3):992–1000
Gallagher B, Eliassi-Rad T (2008) Classification of HTTP attacks: a study on the ECML/PKDD 2007 discovery challenge. In: Center for Advanced Signal and Image Sciences (CASIS) workshop, pp 1–8
Open Web Application Security Project (OWASP) Top 10 (2017). https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project. Accessed 15 Jul 2018
Ukkonen E (1995) On-line construction of suffix trees. Algorithmica 14(3):249–260
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kaur, S., Singh, M. Hybrid intrusion detection and signature generation using Deep Recurrent Neural Networks. Neural Comput & Applic 32, 7859–7877 (2020). https://doi.org/10.1007/s00521-019-04187-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-019-04187-9