[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Heat exchangers play a key role in wide industrial applications. Due to their complex design and high manufacturing cost, their efficient operation and optimum design are quite important for overall cost minimization. There have been several optimization algorithms developed so far for the optimum design of the shell-and-tube heat exchanger (STHE). In this paper, the ability to emerge AI-based optimization method referred to as cohort intelligence (CI) is demonstrated by solving the design and economic optimization of the STHEs. Three cases were solved. These three cases include fluids, which are different at both the shell side and tube side with different inlet and outlet temperatures at the shell side and tube side. The associated key variables such as tube outside diameter, baffle spacing, pitch size, shell inside diameter and number of tube passes that decide the total cost of the heat exchanger were optimized. The performance of the CI method is compared with existing algorithms. The quality and robustness of the CI solution at reasonable computational cost highlighted its applicability by solving real-world problems from mechanical engineering domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

b :

Baffle spacing (\({\text{m}}\))

C p :

Specific heat (\({\text{kJ}}/{\text{kg}}\,{\text{K}}\))

C inv :

Capital investment \((\EUR)\)

C E :

Energy cost (\(\EUR/{\text{kW}}\,{\text{h}}\))

C annual :

Annual operating cost \((\EUR/{\text{year}})\)

\(C_{{{\text{total}}\_{\text{disc}}}}\) :

Total discounted operating cost \((\EUR)\)

\(C_{\text{total}}\) :

Total annual cost \((\EUR)\)

\(d\) :

Tube diameter (m)

\(D\) :

Shell diameter (m)

\(f\) :

Friction factor

\(F\) :

Correction factor

\(h\) :

Heat transfer coefficient (\({\text{W}}/{\text{m}}^{2} {\text{K}}\))

\(A\) :

Annual operating time (\({\text{h}}/{\text{year}}\))

\(I\) :

Annual discount rate \(\left( \% \right)\)

\(k\) :

Thermal conductivity (\({\text{W}}/{\text{m K}}\))

\(L\) :

Tube length (m)

\(m\) :

Mass flow rate (\({\text{kg}}/{\text{s}}\))

\(n_{\text{t}}\) :

Number of tube passes

\(n_{\text{y}}\) :

Equipment life (year)

\(N_{\text{t}}\) :

Number of tubes

\(G\) :

Pumping power (W)

\(Pr\) :

Prandtl number

\(P_{\text{t}}\) :

Tube pitch (m)

\(Q\) :

Heat transfer rate (W)

\({Re}\) :

Reynolds number

\(R_{\text{l}}\) :

Fouling resistance (\({\text{m}}^{2} {\text{K/W}}\))

\(S\) :

Heat transfer surface area (m2)

\(T\) :

Temperature (K)

\(H\) :

Overall heat transfer coefficient (\({\text{W}}/{\text{m}}^{2} {\text{K}}\))

\(v\) :

Fluid velocity (m/s)

\(\Delta P\) :

Pressure drop (Pa)

\(\Delta T_{\text{LM}}\) :

Logarithmic mean temperature difference (°C)

\(\mu\) :

Dynamic viscosity (Pas)

\(\vartheta\) :

Kinematic viscosity (m2/s)

\(\rho\) :

Density (kg/m3)

\(\eta\) :

Overall pumping efficiency

i:

Inlet

o:

Outlet

s:

Belonging to shell

t:

Belonging to the tube

e:

Equivalent

w:

Tube wall

References

  1. Babu BV, Munawar SA (2007) Differential evolution strategies for the optimal design of shell and tube heat exchangers. Chem Eng Sci 62(14):3720–3739

    Article  Google Scholar 

  2. Beyer HG, Schwefel HP (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1(1):3–52

    Article  MathSciNet  MATH  Google Scholar 

  3. Caputo AC, Pelagagge PM, Salini P (2008) Heat exchanger design based on economic optimization. Appl Therm Eng 28(10):1151–1159

    Article  Google Scholar 

  4. Chaudhari PD, Diwekar UM, Logsdon JS (1997) An automated approach for the optimal design of heat exchangers. Ind Eng Chem Res 36(9):3685–3693

    Article  Google Scholar 

  5. Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

  6. Costa ALH, Queiroz EM (2008) Design optimization of shell and tube heat exchanger. Appl Therm Eng 28(14–15):1798–1805

    Article  Google Scholar 

  7. Deshpande AM, Phatnani GM, Kulkarni AJ (2013) Constraint handling in firefly algorithm. In: Proceedings of IEEE international conference on cybernetics, Lausanne, Switzerland, 13–15 June 2013, pp 186–190

  8. Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. Thesis, Polytechnic University of Milan, Italy

  9. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol 1, pp 39–43

  10. Farmer JD, Packard NH, Perelson AS (1986) The immune system, adaptation, and machine learning. Physica D 22(1):187–204

    Article  MathSciNet  Google Scholar 

  11. Fraas AP (1989) Heat exchanger design, 2nd edn. Wiley, New York

    Google Scholar 

  12. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  13. Glover F (1977) Heuristics for integer programming using surrogate constraints. Decis Sci 8(1):156–166

    Article  Google Scholar 

  14. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Article  Google Scholar 

  16. Hadidi A, Nazari A (2013) A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view. Energy Convers Manag 67:66–74

    Article  Google Scholar 

  17. Hadidi A, Nazari A (2013) Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm. Appl Therm Eng 51(1–2):1263–1272

    Article  Google Scholar 

  18. Hewitt GF (1998) Heat exchanger design handbook. Begell House, New York

    Google Scholar 

  19. Hilbery R, Janiga G, Baron R, Thevenin D (2006) Multi-objective shape optimization of a heat exchanger using parallel genetic algorithm. Int J Heat Mass Transf 49(15):2567–2577

    Article  MATH  Google Scholar 

  20. Holland JH, Booker LB, Colombetti M, Dorigo M, Goldberg DE, Forrest S, Wilson SW (2000) What is a learning classifier system? In learning classifier systems, (3–32). Springer, Berlin

    Google Scholar 

  21. Jegede FO, Polley GT (1992) Optimum heat exchanger design: process design. Chem Eng Res Des 70(A2):133–141

    Google Scholar 

  22. Kara YA, Güraras Ö (2004) A computer program for designing of shell-and-tube heat exchangers. Appl Therm Eng 24(13):1797–1805

    Article  Google Scholar 

  23. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, vol 200. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department

  24. Kazemzadeh Azad S, Hasançebi O (2014) An elitist self-adaptive step-size search for structural design optimization. Appl Soft Comput 19:226–235

    Article  Google Scholar 

  25. Kazemzadeh Azad S, Hasançebi O, Kazemzadeh Azad S (2013) Upper bound strategy for metaheuristic based design optimization of steel frames. Adv Eng Softw 57:19–32

    Article  Google Scholar 

  26. Kazemzadeh Azad S, Hasançebi O, Saka MP (2014) Guided stochastic search technique for discrete sizing optimization of steel trusses: a design-driven heuristic approach. Comput Struct 134:62–74

    Article  Google Scholar 

  27. Kern DQ (1950) Process Heat Transfer, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  28. Kirkpatrick S, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  29. Krishnanand KN, Ghose D (2005) Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: Proceedings 2005 IEEE swarm intelligence symposium, SIS 2005, IEEE, pp 84–91

  30. Krishnasamy G, Kulkarni AJ, Paramesram R (2014) A hybrid approach for data clustering based on modified cohort intelligence and K-means. Expert Syst Appl 41(13):6009–6016

    Article  Google Scholar 

  31. Kulkarni AJ, Baki MF, Chaouch BA (2016) Application of the cohort-intelligence optimization method to three selected combinatorial optimization problems. Eur J Oper Res 250(2):427–447

    Article  MathSciNet  MATH  Google Scholar 

  32. Kulkarni AJ, Durugkar IP, Kumar M (2013) Cohort intelligence: a self-supervised learning behavior. In: 2013 IEEE international conference on systems, man, and cybernetics (SMC), pp 1396–1400

  33. Kulkarni AJ, Krishnasamy G, Abraham A (2017) Cohort Intelligence: a socio-inspired optimization method, Intelligent Systems Reference Library, 114. Springer, Berlin. doi:10.1007/978-3-319-44254-9, ISBN: 978-3-319-44254-9

  34. Kulkarni AJ, Shabir H (2016) Solving 0–1 knapsack problem using cohort intelligence algorithm. Int J Mach Learn Cybern 7:1–15

    Article  Google Scholar 

  35. Kulkarni AJ, Kale IR, Tai K (2016) Probability collectives for solving discrete and mixed variable problems. Int J Comput Aided Eng Technol 8(4):325–361

    Article  Google Scholar 

  36. Kulkarni O, Kulkarni N, Kulkarni AJ, Kakandikar G (2016) Constrained cohort intelligence using static and dynamic penalty function approach for mechanical components design. Int J Parallel Emerg Distrib Syst. doi: 10.1080/17445760.2016.1242728

    Google Scholar 

  37. Laumanns M, Rudolph G, Schwefel HP (1998) A spatial predator–prey approach to multi-objective optimization: a preliminary study. In: Parallel problem solving from nature—PPSN V. Springer, Berlin, pp 241–249

  38. Liu Y, Passino KM (2002) Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors. J Optim Theory Appl 115(3):603–628

    Article  MathSciNet  MATH  Google Scholar 

  39. Mariani VC, Duck ARK, Guerra FA, Coelho LDS, Rao RV (2012) A chaotic quantum-behaved particle swarm approach applied to optimization of the heat exchanger. Appl Therm Eng 42:119–128

    Article  Google Scholar 

  40. Matyas J (1965) Random optimization. Autom Remote Control 26(2):246–253

    MathSciNet  MATH  Google Scholar 

  41. Mizutani FT, Pessoa FLP, Queiroz EM, Hauan S, Grossmann IE (2003) Mathematical programming model for heat-exchanger network synthesis including detailed heat-exchanger designs. Shell-and-tube heat exchanger design. Ind Eng Chem Res 42:4009–4018

    Article  Google Scholar 

  42. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report, 826

  43. Muralikrishna K, Shenoy UV (2000) Heat exchanger targets for minimum area and cost. Chem Eng Res Des 78(2):161–167

    Article  Google Scholar 

  44. Ohadi MM (2000) The engineering handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  45. Patel VK, Rao RV (2010) Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique. Appl Therm Eng 30(11–12):1417–1425

    Article  Google Scholar 

  46. Patterson JH, Talbot FB, Slowinski R, Wegłarz J (1990) Computational experience with a backtracking algorithm for solving a general class of precedence and resource-constrained scheduling problems. Eur J Oper Res 49(1):68–79

    Article  Google Scholar 

  47. Peters MS, Timmerhaus KD (1991) Plant design and economics for chemical engineers, 4th edn. McGraw-Hill, New York

    Google Scholar 

  48. Poddar TK, Polley GT (1996) Heat exchanger design through parameter plotting. Chem Eng Res Des 74(8):849–852

    Article  Google Scholar 

  49. Ponce-Ortega JM, Serna-González M, Jiménez-Gutiérrez A (2009) Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers. Appl Therm Eng 29(2):203–209

    Article  Google Scholar 

  50. Rabanal P, Rodríguez I, Rubio F (2007) Using river formation dynamics to design heuristic algorithms. In: Unconventional computation. Springer, Berlin, pp 163–177

  51. Rastrigin LA (1963) The convergence of the random search method in the extremal control of a many parameter systems. Autom Remote Control 24(10):1337–1342

    Google Scholar 

  52. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  53. Ravagnani MASS, Da Silva AP, Andrade AL (2003) Detailed equipment in heat exchanger networks synthesis and optimization. Appl Therm Eng 23:141–151

    Article  Google Scholar 

  54. Reppish M, Zagermann S (1995) A new design method for segmentally baffled heat exchangers. Comput Chem Eng 19:137–142

    Article  Google Scholar 

  55. Rosenhow WM, Polley PJ (1973) Handbook of heat transfer, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  56. Sahin AS, Kilic B, Kilic U (2011) Design and economic optimization of shell-and-tube heat exchangers using artificial bee colony (ABC) algorithm. Energy Convers Manag 52(11):1417–1425

    Google Scholar 

  57. Selbas R, Kizilkan O, Reppich M (2006) A new design approach for shell-and-tube heat exchangers using genetic algorithm from economic point of view. Chem Eng Process 45(4):268–275

    Article  Google Scholar 

  58. Serth RW (2007) Process heat transfer, 1st edn. Principles and applications. Elsevier Science and Technology Books, Amsterdam

  59. Shah RK, Bell KJ (2000) Handbook of thermal engineering. CRC Press, Boca Raton

    Google Scholar 

  60. Shastri AS, Jadhav PS, Kulkarni AJ, Abraham A (2015) Solution to constrained test problems using cohort intelligence algorithm, advances in intelligent and soft computing 424. In: Snacel V, Abraham A, Kromer P, Pant M, Muda AK (eds) Innovations in bio-inspired computing and applications. Springer, Berlin, pp 427–435

    Google Scholar 

  61. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  62. Sinnot RK (2005) Coulson and Richardson’s chemical engineering: chemical engineering design. 4th edn. vol 6. Elsevier, Oxford, MA

  63. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  64. Sun S, Lu Y, Yan C (1993) Optimization in calculation of shell and tube heat exchanger. Int Commun Heat Mass Transfer 20(5):675–685

    Article  Google Scholar 

  65. Taal M, Bulatov I, Klemes J, Stehlik P (2003) Cost estimation and energy price forecast for economic evaluation of retrofit projects. Appl Therm Eng 23(14):1819–1835

    Article  Google Scholar 

  66. Turgut OE, Turgut MS, Coban MT (2014) Design and economic investigation of shell and tube heat exchangers using improved intelligent tuned harmony search algorithm. Ain Shams Eng J 5(4):1215–1231

    Article  Google Scholar 

  67. Wald RM (1993) Black hole entropy is the Noether charge. Phys Rev D 48(8):R3427

    Article  MathSciNet  MATH  Google Scholar 

  68. Wildi-Tremblay P, Gosselin L (2007) Minimizing shell and tube heat exchanger cost with genetic algorithms and considering maintenance. Int J Energy Res 31(9):867–885

    Article  Google Scholar 

  69. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and applications. Springer, Berlin, pp 169–178)

  70. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature and biologically inspired computing, NaBIC 2009. IEEE, pp 210–214

  71. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74

  72. Zaslavskii GM (1978) The simplest case of a strange attractor. Phys Lett A 69(3):145–147

    Article  MathSciNet  Google Scholar 

  73. Zhang L, Wang F, Sun T, Xu B (2016) A constrained optimization method based on BP neural network. Neural Comput Appl. doi:10.1007/s00521-016-2455-9

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their comments which certainly helped to enrich the quality of the work presented in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand J. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhavle, S.V., Kulkarni, A.J., Shastri, A. et al. Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm. Neural Comput & Applic 30, 111–125 (2018). https://doi.org/10.1007/s00521-016-2683-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2683-z

Keywords

Navigation