[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Evolutionary framework for coding area selection from cancer data

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Cancer data analysis is significant to detect the codes that are responsible for cancer diseases. It is significant to find out the coding regions from diseases infected biological data. The infected data will be helpful to design proper drugs and will be supportable in laboratory assessments. Codes bear specific meaning on various features as well as symptoms of diseases. Coding of biological data is a key area to get exact information on animals to discover the desired medicine. In the current work, four different machine learning approaches such as support vector machine (SVM), principal component analysis (PCA) technique, neural mapping skyline filtering (NMSF) and Fisher’s discriminant analysis (FDA) were applied for data reduction and coding area selection. The experimental analysis established that the SVM outperforms PCA and FDA. However, due to the mapping facility, NMSF outperforms SVM. Thus, the NMSF achieved the preeminent results among the four techniques. Matthews’s correlation coefficient was used to evaluate the accuracy, specificity, sensitivity, F-measures and error rate of the four methods that are used to determine the coding area. Detailed experimental analysis included comparison study among the four classifiers for the deoxyribonucleic acid dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cui P, Liu H, Aggarwal C, Wang F (2016) Uncovering and predicting human behaviors. IEEE Intell Syst 31(2):77–88

    Article  Google Scholar 

  2. Subbian K, Aggarwal CC, Srivastava J (2016) Mining influencers using information flows in social streams. ACM Trans Knowl Discov Data 10(3):26

    Article  Google Scholar 

  3. Li J, Le TD, Liu L, Liu J, Jin Z, Sun B, Ma S (2016) From observational studies to causal rule mining. ACM Trans Intell Syst Technol 7(2):14

    Google Scholar 

  4. Wu CJ, Ku CF, Ho JM, Chen MS (2016) A novel pipeline approach for efficient big data broadcasting. IEEE Trans Knowl Data Eng 28(1):17–28

    Article  Google Scholar 

  5. Leis V, Kemper A, Neumann T (2016) Scaling HTM-supported database transactions to many cores. IEEE Trans Knowl Data Eng 28(2):297–310

    Article  Google Scholar 

  6. Bhowmick SS, Seah BS (2016) Clustering and summarizing protein-protein interaction networks: a survey. IEEE Trans Knowl Data Eng 28(3):638–658

    Article  Google Scholar 

  7. Zhou C, Cule B, Goethasls B (2016) Pattern based sequence classification. IEEE Trans Knowl Data Eng 28(5):1285–1298

    Article  Google Scholar 

  8. Zhong J, Ong YS, Cai W (2016) Self-learning gene expression programming. IEEE Trans Evol Comput 20(1):65–80

    Article  Google Scholar 

  9. He J, Lin G (2016) Average convergence rate of evolutionary algorithms. IEEE Trans Evol Comput 20(1):316–321

    Article  Google Scholar 

  10. Deadman E, Higham NJ (2016) Testing matrix function algorithms using identities. ACM Trans Math Softw 42(1):4

    Article  MathSciNet  MATH  Google Scholar 

  11. Kiah HM, Puleo GJ, Milenkovic O (2016) Codes for DNA sequence profiles. IEEE Trans Inf Theory 62(6):3125–3146

    Article  MathSciNet  MATH  Google Scholar 

  12. Chien JT, KuBayesian YC (2016) Recurrent neural network for language modeling. IEEE Trans Neural Netw Learn Syst 27(2):361–374

    Article  MathSciNet  Google Scholar 

  13. Turcu A, Palmieri R, Ravindran B, Hirve S (2016) Automated data partitioning for highly scalable and strongly consistent transactions. IEEE Trans Parallel Distrib Syst 27(1):106–118

    Article  Google Scholar 

  14. Deng SP, Zhu L, Huang DS (2016) Predicting hub genes associated with cervical cancer through gene co-expression networks. IEEE/ACM Trans Comput Biol Bioinf 13(1):27–35

    Article  Google Scholar 

  15. Hsieh SY, Chou YC (2016) A faster cDNA microarray gene expression data classifier for diagnosing diseases. IEEE/ACM Trans Comput Biol Bioinf 13(1):43–54

    Article  Google Scholar 

  16. Dhulekar N, Ray S, Yuan D, Baskaran A, Oztan B, Larsen M, Yene B (2016) Prediction of growth factor-dependent cleft formation during branching morphogenesis using a dynamic graph-based growth model. IEEE/ACM Trans Comput Biol Bioinf 13(2):350–363

    Article  Google Scholar 

  17. Borroto OM, Vega JMG, Ponce YM, Grau R (2016) Relational agreement measures for similarity searching of cheminformatic data sets. IEEE/ACM Trans Comput Biol Bioinf 13(1):158–167

    Article  Google Scholar 

  18. Sáez JA, Luengo J, Herrera F (2016) Evaluating the classifier behavior with noisy data considering performance and robustness: the equalized loss of accuracy measure. Neurocomputing 176:26–35

    Article  Google Scholar 

  19. Saez JA, Galar M, Luengo J, Herrera F (2016) INFFC: an iterative class noise filter based on the fusion of classifiers with noise sensitivity control. Inf Fusion 27:505–636

    Article  Google Scholar 

  20. Palacios A, Sanchez L, Couso I (2016) An extension of the FURIA classification algorithm to low quality data through fuzzy rankings and its application to the early diagnosis of dyslexia. Neurocomputing 176:60–71

    Article  Google Scholar 

  21. Fdez JA, Alonso JM (2016) A survey of fuzzy systems software: taxonomy, current research trends and prospects. IEEE Trans Fuzzy Syst 24(1):40–56

    Article  Google Scholar 

  22. Martin D, Fdez JA, Rosete A, Herrera F (2016) NICGAR: a niching genetic algorithm to mine a diverse set of interesting quantitative association rules. Inf Sci 355–356:208–228

    Article  Google Scholar 

  23. González M, Bergmeir C, Triguero I, Rodríguez Y, Benítez JM (2016) On the stopping criteria for k-nearest neighbor in positive unlabeled time series classification problems. Inf Sci 328:42–59

    Article  Google Scholar 

  24. Morente-Molinera JA, Pérez IJ, Ureña MR, Herrera-Viedma E (2016) Creating knowledge databases for storing and sharing people knowledge automatically using group decision making and fuzzy ontologies. Inf Sci 328:418–434

    Article  Google Scholar 

  25. Dong Y, Zhang H, Herrera-Viedma E (2016) Integrating experts’ weights generated dynamically into the consensus reaching process and its applications in managing non-cooperative behaviors. Decis Support Syst 84:1–15

    Article  Google Scholar 

  26. Fernandez A, Carmona CJ, del Jesus MJ, Herrera F (2016) A view on fuzzy systems for big data: progress and opportunities. Int J Comput Intell Syst 9(1):69–80

    Article  Google Scholar 

  27. Peralta D, Triguero I, García S, Herrera F, Benítez JM (2016) DPD–DFF: a dual phase distributed scheme with double fingerprint fusion for fast and accurate identification in large databases. Inf Fusion 32:40–51

    Article  Google Scholar 

  28. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2016) Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets. Inf Sci 354:178–196

    Article  Google Scholar 

  29. Lozano M, Rodriguez FJ, Peralta D, García-Martínez C (2016) Randomized greedy multi-start algorithm for the minimum common integer partition problem. Eng Appl Artif Intell 50:226–235

    Article  Google Scholar 

  30. Cavalcante RG, Patil S, Weymouth TE, Bendinskas KG, Karnovsky A, Maureen A (2016) Sartor ConceptMetab: exploring relationships among metabolite sets to identify links among biomedical concepts. Bioinformatics 32(10):1536–1543

    Article  Google Scholar 

  31. Domínguez JG, Schmidt B (2016) ParDRe: faster parallel duplicated reads removal tool for sequencing studies. Bioinformatics 32(10):1562–1564

    Article  Google Scholar 

  32. Machado MR, Pantano S (2016) SIRAH tools: mapping, backmapping and visualization of coarse-grained models. Bioinformatics 32(10):1568–1570

    Article  Google Scholar 

  33. Burkett KM, McNeney B, Graham J (2016) Sampletrees and Rsampletrees: sampling gene genealogies conditional on SNP genotype data. Bioinformatics 32(10):1568–1570

    Article  Google Scholar 

  34. Liu Y, Zhao M (2016) lnCaNet: pan-cancer co-expression network for human lncRNA and cancer genes. Bioinformatics 32(10):1595–1597

    Article  MathSciNet  Google Scholar 

  35. Meyer MJ, Geske P, Yu H (2016) BISQUE: locus- and variant-specific conversion of genomic, transcriptomic and proteomic database identifiers. Bioinformatics 32(10):1598–2000

    Article  Google Scholar 

  36. Lyu Y, Li Q (2016) A semi-parametric statistical model for integrating gene expression profiles across different platforms. BMC Bioinf 17(5):51

    Google Scholar 

  37. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2014) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  Google Scholar 

  38. Sancho-Asensio A, Orriols-Puig A, Casillas J (2016) Evolving association streams. Inf Sci 334–335:250–272

    Article  Google Scholar 

  39. Sáez JA, Luengo J, Herrera F (2016) Evaluating the classifier behavior with noisy data considering performance and robustness: the equalized loss of accuracy measure. Neurocomputing 176:26–35

    Article  Google Scholar 

  40. Ramentol E, Gondres I, Lajes S, Bello R, Caballero Y, Cornelis C, Herrera F (2016) Fuzzy-rough imbalanced learning for the diagnosis of high voltage circuit breaker maintenance: the SMOTE-FRST-2T algorithm. Eng Appl Artif Intell 48:134–139

    Article  Google Scholar 

  41. Ramírez-Gallego S, García S, Mouriño-Talín H, Martínez-Rego D, Bolón-Canedo V, Alonso-Betanzos A, Benítez JM, Herrera F (2016) Data discretization: taxonomy and big data challenge. Wiley interdisciplinary reviews. Data Min Knowl Disc 6(1):5–21

    Article  Google Scholar 

  42. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188

    Article  Google Scholar 

  43. Verbiest N, Derrac J, Cornelis C, García S, Herrera F (2016) Evolutionary wrapper approaches for training set selection as preprocessing mechanism for support vector machines: experimental evaluation and support vector analysis. Appl Soft Comput 38:10–22

    Article  Google Scholar 

  44. Wu A, Wen S, Zeng Z (2012) Synchronization control of a class of memristor-based recurrent neural networks. Inf Sci 183(1):106–116

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu A, Zeng Z (2013) Anti-synchronization control of a class of memristive recurrent neural networks. Commun Nonlinear Sci Numer Simul 18(2):373–385

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang G, Shen Y (2014) Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control. Neural Netw 55:1–10

    Article  MATH  Google Scholar 

  47. Zhang G, Shen Y, Sun J (2012) Global exponential stability of a class of memristor-based recurrent neural networks with time-varying delays. Neurocomputing 97:149–154

    Article  Google Scholar 

  48. Zhang G, Shen Y, Yin Q, Sun J (2013) Global exponential periodicity and stability of a class of memristor-based recurrent neural networks with multiple delays. Inf Sci 232:386–396

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang G, Shen Y, Wang L (2013) Global anti-synchronization of a class of chaotic memristive neural networks with time-varying delays. Neural Netw 46:1–8

    Article  MATH  Google Scholar 

  50. Zhang G, Shen Y (2013) New algebraic criteria for synchronization stability of chaotic memristive neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 24(10):1701–1707

    Article  Google Scholar 

  51. Wen S, Zeng Z, Huang T (2012) Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays. Neurocomputing 97:233–240

    Article  Google Scholar 

  52. Chen J, Zeng Z, Jiang P (2014) Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8

    Article  MATH  Google Scholar 

  53. Wang X, Li C, Huang T, Duan S (2014) Global exponential stability of a class of memristive neural networks with time-varying delays. Neural Comput Appl 24(8):1707–1715

    Article  Google Scholar 

  54. Guo Z, Wang J, Yan Z (2013) Global exponential dissipativity and stabilization of memristor-based recurrent neural networks with time-varying delays. Neural Netw 48:158–172

    Article  MATH  Google Scholar 

  55. Guo Z, Wang J, Yan Z (2014) Attractivity analysis of memristor-based cellular neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 25(4):704–717

    Article  Google Scholar 

  56. Sun J, Shen Y, Yin Q, Xu C (2013) Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos 23(1):013140

    Article  MathSciNet  MATH  Google Scholar 

  57. Bo-Cheng B, Zhong L, Jian-Ping X (2010) Transient chaos in smooth memristor oscillator. Chin Phys B 19(3):030510

    Article  Google Scholar 

  58. Wu CW (2001) Synchronization in arrays of coupled nonlinear systems: passivity, circle criterion, and observer design. IEEE Trans Circuits Syst I Fundam Theory Appl 48(10):1257–1261

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhang Y, Wang J, Wang X (2014) Review on probabilistic forecasting of wind power generation. Renew Sustain Energy Rev 32:255–270

    Article  Google Scholar 

  60. Quan H, Srinivasan D, Khosravi A (2015) Incorporating wind power forecast uncertainties into stochastic unit commitment using neural network-based prediction intervals. IEEE Trans Neural Netw Learn Syst 26(9):2123–2135

    Article  MathSciNet  Google Scholar 

  61. Yuan Y, Mou L, Lu X (2015) Scene recognition by manifold regularized deep learning architecture. IEEE Trans Neural Netw Learn Syst 26(10):2222–2233

    Article  MathSciNet  Google Scholar 

  62. Zhang W, Tang Y, Wong WK, Miao Q (2015) Stochastic stability of delayed neural networks with local impulsive effects. IEEE Trans Neural Netw Learn Syst 26(10):2336–2345

    Article  MathSciNet  Google Scholar 

  63. Chang C (2015) Deep and shallow architecture of multilayer neural networks. IEEE Trans Neural Netw Learn Syst 26(10):2477–2486

    Article  MathSciNet  Google Scholar 

  64. Yang JB, Singh MG (1994) An evidential reasoning approach for multiple attribute decision making with uncertainty. IEEE Trans Syst Man Cybern 24(1):1–18

    Article  Google Scholar 

  65. Yang JB, Sen P (1994) A general multi-level evaluation process for hybrid MADM with uncertainty. IEEE Trans Syst Man Cybern 24(10):1458–1473

    Article  Google Scholar 

  66. Yang JB (2001) Rule and utility based evidential reasoning approach for multi-attribute decision analysis under uncertainties. Eur J Oper Res 131(1):31–61

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira S. Ashour.

Ethics declarations

Conflict of interest

The authors declared that no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, S., Dey, N., Nimmy, S.F. et al. Evolutionary framework for coding area selection from cancer data. Neural Comput & Applic 29, 1015–1037 (2018). https://doi.org/10.1007/s00521-016-2513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2513-3

Keywords

Navigation