[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

ANN modeling of the bremsstrahlung photon flux in tantalum target

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Bremsstrahlung photons produced by 15 MeV electron beam are simulated using the Monte Carlo code of FLUKA. Tantalum foils have been chosen as a target material in the simulation, and the obtained photon spectrum has been analyzed with artificial neural network (ANN) technique. In the training ANN model, the thicknesses and energy values of bremsstrahlung photons for the Ta target have been used as input. In this study, we observed that the trained ANN model is consistent with simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Doostmohammadi V, Sardari D, Nasrabadi AM (2010) Combined application of Monte Carlo method and neural networks to simulate qualitative prompt gamma neutron activation analysis. J Radioanal Nucl Chem 283:403–407

    Article  Google Scholar 

  2. Hussain S (2010) IEEE, International conference on intelligent systems, modelling and simulation

  3. FLUKA (2005) A multi-particle transport code, version 2005, CERN-2005-10, INFN TC. 05/11, SLAC-R-773

  4. Fasso A et al (2005) FLUKA: a multi-particle transport code. CERN-2005-10, INFN/TC-05/11, SLAC-R-773

  5. Fasso A et al (1995) Designing of electron accelerator shielding with FLUKA. CERN Internal report TIS-RP/IR/95-27, pp 643–649

  6. Kalogirou SA (1999) Applications of artificial neural networks in energy systems A review. Energy Convers Manag 40(10):1073–1087

    Article  Google Scholar 

  7. Özçalık HR, Küçüktüfekçi A (2003) Dinamik Sistemlerin Yapay Sinir Ağları ile Düz ve Ters Modellenmesi. KSÜ Fen ve Mühendislik Dergisi 6(1):26–35

    Google Scholar 

  8. Günoglu K, Mavi B, Akkurt İ (2011) Yapay Sinir Ağları (YSA) Yöntemi ile Global Radyasyon Tahmini. J New World Sci Acad 6–2:527–532

    Google Scholar 

  9. Imrie CE, Durucan S, Korre A (2000) River flow prediction using artificial neural networks: generalization beyond the calibration range. J Hydrol 233:138–153

    Article  Google Scholar 

  10. Kartalopoulos SV (1996) Understanding neural networks and fuzzy logic: basic concepts and applications. IEEE Press, New York

    MATH  Google Scholar 

  11. Günoğlu K, Akkurt İ, Mavi B (2010) Estimation of daily solar temperature by ANN in Isparta. Second international conference on nuclear and renewable energy resources (NURER), Ankara

  12. Funahashi K (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2:183–192

    Article  Google Scholar 

  13. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  14. Öztemel E (2003) Yapay sinir ağları. Papatya Yayıncılık, İstanbul

    Google Scholar 

  15. Sudheer KP, Gosain AK, Mohana Rangan D, Saheb SM (2002) Modelling evaporation using an artificial neural network algorithm. Hydrol Process 16:3189–3202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskender Akkurt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunoglu, K., Demir, N., Akkurt, I. et al. ANN modeling of the bremsstrahlung photon flux in tantalum target. Neural Comput & Applic 23, 1591–1595 (2013). https://doi.org/10.1007/s00521-012-1111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1111-2

Keywords

Navigation