[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Nonlinear discriminant clustering based on spectral regularization

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Owing to sparseness, directly clustering high-dimensional data is still a challenge problem. Therefore, obtaining their low-dimensional compact representation by dimensional reduction is an effective method for clustering high-dimensional data. Most of existing dimensionality reduction methods, however, are developed originally for classification (such as Linear Discriminant Analysis) or recovering the geometric structure (known as manifold) of high-dimensional data (such as Locally Linear Embedding) rather than clustering purpose. Hence, a novel nonlinear discriminant clustering by dimensional reduction based on spectral regularization is proposed. The contributions of the proposed method are two folds: (1) it can obtain nonlinear low-dimensional representation that can recover the intrinsic manifold structure as well as enhance the cluster structure of the original high-dimensional data; (2) the clustering results can also be obtained in the dimensionality reduction procedure. Firstly, the desired low-dimensional coordinates are represented as linear combinations of predefined smooth vectors with respect to the data manifold, which are characterized by a weighted graph. Then, the optimal combination coefficients and the optimal cluster assignment matrix are computed by maximizing the ratio between the between-cluster scatter and the total scatter simultaneously as well as preserving the smoothness of the cluster assignment matrix with respect to the data manifold. Finally, the optimization problem is solved in an iterative procedure, which is proved to be convergent. Experiments on UCI data sets and real world data sets demonstrated the effectiveness of the proposed method for both clustering and visualization high-dimensional data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://www.uk.research.att.com/facedatabase.html.

  2. http://yann.lecun.com/exdb/mnist/.

  3. http://people.csail.mit.edu/jrennie/20Newsgroups/.

  4. http://www.nist.gov/speech/tests/tdt/tdt98/index.html.

References

  1. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  2. Belkin M, Niyogi P (2004) Semi-supervised learning on riemannian manifolds. Mach Learn 56(1):209–239

    Article  MATH  Google Scholar 

  3. Boutsidis C, Mahoney M, Drineas P (2009) Unsupervised feature selection for the k-means clustering problem. In: NIPS 2009

  4. Ding C, Li T (2007) Adaptive dimension reduction using discriminant analysis and k-means clustering. In: Proceedings of the 24th international conference on Machine learning. ACM, New York, pp 521–528

  5. Ding CH, He X, Zha H, Gu M, Simon HD (2001) A min-max cut algorithm for graph partitioning and data clustering. In: Proceedings of the 2001 IEEE international conference on data mining, pp 107–114

  6. Hagen L, Kahng AB (1992) New spectral methods for ratio cut partitioning and clustering. IEEE Trans Comput Aided Design Integr Circ Syst 11(9):1074–1085

    Article  Google Scholar 

  7. Hou C, Nie F, Zhang C, Wu Y (2009) Learning a subspace for face image clustering via trace ratio criterion. Opt Eng 48:060501–060503

    Google Scholar 

  8. Jianbo SY, Yu SX, Shi J (2003) Multiclass spectral clustering. In: Proceedings of 9th IEEE international conference on computer vision, pp 313–319

  9. Li Z, Liu J, Tang X (2009) Constrained clustering via spectral regularization. In: IEEE conference on computer vision and pattern recognition, 2009 (CVPR’09)

  10. Lovász L, Plummer MD (2009) Matching theory. Chelsea Pub Co, New York

  11. von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17:395–416

    Article  MathSciNet  Google Scholar 

  12. Nene SA, Nayar SK, Murase H (1996) Columbia object image library (coil-20). Technical report, Department of Computer Science, Columbia University, New York. http://www.cs.columbia.edu/CAVE/coil-20.html

  13. Nie F, Xu D, Tsang IW, Zhang C (2009) Spectral embedded clustering. In: Proceedings of the 21st international jont conference on artifical intelligence. Morgan Kaufmann Publishers Inc., San Francisco, pp 1181–1186

  14. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  MATH  Google Scholar 

  15. Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  16. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  17. la Torre FD, Kanade T (2006) Discriminative cluster analysis. In: Proceedings of the 23rd international conference on machine learning. ACM, New York, pp 241–248

  18. Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51. doi:10.1109/TPAMI.2007.250598

    Article  Google Scholar 

  19. Ye J, Zhao Z, Liu H (2007) Adaptive distance metric learning for clustering. In: IEEE conference on computer vision and pattern recognition (CVPR’07), pp 1–7

  20. Ye J, Zhao Z, Wu M (2008) Discriminative k-means for clustering. In: Platt J, Koller D, Singer Y, Roweis S (eds) Advances in neural information processing systems, vol 20. MIT Press, Cambridge, pp 1649–1656

    Google Scholar 

  21. Zelnik-Manor L, Perona P (2005) Self-tuning spectral clustering. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems 17. MIT Press, Cambridge, pp 1601–1608

    Google Scholar 

  22. Zha H, He X, Ding C, Simon H (2002) Spectral relaxation for k-means clustering. In: Advances in neural information processing systems, vol 2. MIT Press, Cambridge, pp 1057–1064

Download references

Acknowledgments

This work is supported by Natural Science Foundation of China (60970034, 60603015), and the Foundation for Author of National Excellent Doctoral Dissertation (Grant No. 2007B4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubin Zhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, Y., Yin, J. & Liu, X. Nonlinear discriminant clustering based on spectral regularization. Neural Comput & Applic 22, 1599–1608 (2013). https://doi.org/10.1007/s00521-012-0929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-0929-y

Keywords

Navigation