[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Functional modeling of astrocytes in epilepsy: a feedback system perspective

  • ISNN 2010
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Astrocytes, a subtype of glial cells, in the brain provide structural and metabolic supports to the nervous system. They are also active partners in synaptic transmission and neuronal activities. In the present study, a biologically plausible thalamocortical neural population model (TCM) originally proposed by Suffczynski et al. (Neuroscience 126(2):467–484, 2004) is extended by integrating the functional role of astrocytes in the regulation of synaptic transmission. Therefore, the original TCM is modified to consider neuron-astrocyte interactions. Using the modified model, it is demonstrated that the healthy astrocytes are capable to compensate the variation of cortical excitatory input by increasing their firing frequency. In this way, they can preserve the attractor corresponding to the normal activity. Furthermore, the performance of the pathological astrocytes is also investigated. It is hypothesized that one of the plausible causes of seizures is the malfunction of astrocytes in the regulatory feedback loop. That is, pathologic astrocytes are not any more able to regulate and/or compensate the excessive increase of the cortical input. Therefore, pathologic astrocytes lead to the emergence of paroxysmal attractor. Results demonstrate that disruption of the homeostatic or signaling function of astrocytes can initiate the synchronous firing of neurons, suggesting that astrocytes might be one of the potential targets for the treatment of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lehnertz K, Bialonski S, Horstmann MT, Krug D, Rothkegel A, Staniek M, Wagner T (2009) Synchronization phenomena in human epileptic brain networks. J Neurosci Meth 183(1):42–48

    Article  Google Scholar 

  2. Demont-Guignard S, Benquet P, Gerber U, Wendling F (2009) Analysis of intracerebral EEG recordings of epileptic spikes: insights from a neural network model. IEEE Trans Biomed Eng 56(12):2782–2795

    Article  Google Scholar 

  3. Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G (2009) Astrocyte-neuron interactions in neurological disorders. J Biol Phys 35:317–336

    Article  Google Scholar 

  4. Seifert G, Carmignoto G, Steinhäuser C (in press) Astrocyte dysfunction in epilepsy. Brian Res Rev

  5. Gertrudis P, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25(9):2192–2203

    Article  Google Scholar 

  6. Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26:536–542

    Article  Google Scholar 

  7. Voltarra A, Steinhauser C (2004) Glial modulation of synaptic transmission in the hippocampus. GLIA 47:249–257

    Article  Google Scholar 

  8. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743

    Article  Google Scholar 

  9. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  Google Scholar 

  10. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13(2):54–63

    Article  Google Scholar 

  11. Halassa MM, Fellin T, Haydon PG (2009) Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacol 57(4):343–346

    Article  Google Scholar 

  12. Fellin T, Pascual O, Haydon PG (2006) Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21:208–215

    Article  Google Scholar 

  13. Fellin T, Carmignoto G (2004) Neuron-to-astrocyte signaling in the brain represents a distinct multifunctional unit. J Physiol 559:3–15

    Article  Google Scholar 

  14. Chakravarthy N, Tsakalis K, Sabesan S, Iasemidis LD (2009) Homeostasis of brain dynamics in epilepsy: a feedback control systems perspective of seizures. Ann Biomed Eng 37(3):565–585

    Article  Google Scholar 

  15. Suffczynski P, Wendling F, Bellanger JJ, Lopes da Silva FH (2006) Some insights into computational models of (patho) physiological brain activity. Proc IEEE 94(4):784–804

    Article  Google Scholar 

  16. Nadkarni S, Jung P (2004) Dressed neurons: modeling neural-glial interactions. Phys Biol 1:35–41

    Article  Google Scholar 

  17. Nadkarni S, Jung P (2007) Modeling synaptic transmission of the tripartite synapse. Phys Biol 4:1–9

    Article  Google Scholar 

  18. Nadkarni S, Jung P, Levine H (2008) Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol 4(5):1–11

    Article  MathSciNet  Google Scholar 

  19. Postnove DE, Ryazanova LS, Sosnovtseva OV (2007) Functional modeling of neural-glial interaction. BioSystems 89:84–91

    Article  Google Scholar 

  20. Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys 35:425–445

    Article  Google Scholar 

  21. Garbo AD (2009) Dynamics of a minimal neural model consisting of an astrocyte, a neuron, and an interneuron. J Biol Phys 35:361–382

    Article  Google Scholar 

  22. Ullah G, Jung P, Cornell-Bell AH (2006) Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell Calcium 39:197–208

    Article  Google Scholar 

  23. Garbo AD, Barbi M, Chillemi S, Alloisio S, Nobile M (2007) Calcium signaling in astrocytes and modulation of neural activity. BioSystems 89:74–83

    Article  Google Scholar 

  24. Lavrentovich M, Hemkin SA (2008) Mathematical model of spontaneous calcium (II) oscillations in astrocytes. J Theoretic Biol 251(4):553–560

    Article  Google Scholar 

  25. Suffczynski P, Kalitzin S, Lopes da Silva FH (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126(2):467–484

    Article  Google Scholar 

  26. Hung J, Colicos MA (2008) Astrocytic Ca2+ waves guide CNS growth cones to remote regions of neuronal activity. PLoS ONE 3(11):e3692

    Google Scholar 

  27. Suffczynski P, Kalitzin S, Lopes da Silva FH (2008) A neuronal network model of corticothalamic oscillations: the emergence of epileptiform absence seizures. In: Soltesz I, Staley K (eds) Computational neuroscience in epilepsy. Elsevier, Amsterdam, pp 403–418

  28. Destexhe A (2008) Corticothalamic feedback: a key to explain absence seizures. In: Soltesz I, Staley K (eds) Computational neuroscience in epilepsy. Elsevier, Amsterdam, pp 184–211

  29. Chakravarthy N, Sabesan S, Iasemidis LD, Tsakalis K (2007) Modeling and controlling synchronization in a neuron level population model. Int J Neural Syst 17(2):123–138

    Article  Google Scholar 

  30. D’Ambrosio R (2004) The role of glial membrane ion channels in seizures and epileptogenesis. Pharmacol Therapeut 103:95–108

    Article  Google Scholar 

  31. Silchenko AN, Tass PA (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol Cybern 98:61–74

    Article  Google Scholar 

  32. Wetherington J, Serrano G, Dingledine R (2008) Astrocytes in the epileptic brain. Neuron 58:168–178

    Article  Google Scholar 

  33. De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16

    Article  Google Scholar 

  34. Rogawski MA (2005) Astrocytes get in the act in epilepsy. Nat Med 11(9):919–920

    Article  Google Scholar 

  35. Wendling F, Bellanger JJ, Bartolomei F, Chauvel P (2000) Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern 83(4):367–378

    Article  Google Scholar 

  36. Wendling F, Chauvel P (2008) Transition to ictal activity in temporal lobe epilepsy: insights from macroscopic models. In: Soltesz I, Staley K (eds) Computational neuroscience in epilepsy. Elsevier, Amsterdam, pp 356–386

  37. Binder DK, Steinhäuser C (2009) Role of astrocytes in epilepsy. astrocytes in (Patho)physiology of the nervous system. Springer, Berlin, pp 649–671

  38. Santello M, Volterra A (2009) Synaptic modulation by astrocytes via Ca2+-dependent glutamate release. Neuroscience 158(1):253–259

    Article  Google Scholar 

  39. Lopes da Silva FH, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN (2003) Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44(12):72–83

    Article  Google Scholar 

  40. Lopes da Silva FH (2008) The impact of EEG/MEG signal processing and modeling in the diagnostic and management of epilepsy. IEEE Rev Biomed Eng 1:143–156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Amiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amiri, M., Bahrami, F. & Janahmadi, M. Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput & Applic 20, 1131–1139 (2011). https://doi.org/10.1007/s00521-010-0479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0479-0

Keywords

Navigation