Abstract
When interpolating images in the wavelet domain, the main problem is how to estimate the finest detail coefficients. Wavelet coefficients across scales have an interscale dependency, and the dependency varies according to the local energy of the coefficients. This implies the possible existence of functional mappings from one scale to another scale. If we can estimate the mapping parameters from the observed coefficients, then it is possible to predict the finest detail coefficients. In this article, we use the multilayer perceptron (MLP) neural networks to learn a mapping from the coarser scale to the finer scale. When exploiting the MLP neural networks, phase uncertainty, a well-known drawback of wavelet transforms, makes it difficult for the networks to learn the interscale mapping. We solve this location ambiguity by using a phase-shifting filter. After the single-level phase compensation, a wavelet coefficient vector is assigned to one of the energy-dependent classes. Each class has its corresponding network. In the simulation results, we show that the proposed scheme outperforms the previous wavelet-domain interpolation method as well as the conventional spatial domain methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Blu T, Thevenaz P, Unser M (2004) Linear interpolation revitalized. IEEE Trans Image Process 13:710–719. doi:10.1109/TIP.2004.826093
Ramponi G (1999) Warped distance for space variant linear image interpolation. IEEE Trans Image Process 8:629–639. doi:10.1109/83.760311
Khamy SE, Hadhoud MM, Dessouky MI, Salam BM, Abd El-Samie FE (2004) A new edge preserving pixel-by-pixel cubic image interpolation approach. In: NRSC, 16–18 Mar, 2004
Algazi VR, Ford GE, Potharlanka R (1991) Directional interpolation of images based on visual properties and rank order filtering. In: Proc. of IEEE ICASSP’91, vol 4, pp 3005–3008, 1991
Carrato S, Ramponi G, Marsi S (1996) Simple edge-sensitive image interpolation filter. In: Proc. of IEEE ICIP’96, vol 3, pp 711–714
Allebach J, Wong PW (1996) Edge directed interpolation. In: Proc. of ICIP’96, vol 3, pp 707–710
Jensen K, Anastassiou D (1995) Subpixel edge localization and the interpolation of still images. IEEE Trans Image Process 4:285–295. doi:10.1109/83.366477
Li X, Orchard MT (2001) New edge-directed interpolation. IEEE Trans Image Process 10:1521–1527. doi:10.1109/83.951537
Plaziac N (1999) Image interpolation using neural networks. IEEE Trans Image Process 8(11):1647–1651. doi:10.1109/83.799893
Mitra SK, Li H, Lin I, Yu T (1991) A new class of nonlinear filters for image enhancement. Proc IEEE ICASSP 91:2525–2528
Ates HF, Orchard MT (2003) Image interpolation using wavelet-based contour estimation. In: Proc of IEEE ICASSP’03, vol 3, pp 109–112
Carey WK, Chuang DB, Hemami SS (1999) Regularity-preserving interpolation. IEEE Trans Image Process 8(9):1293–1297. doi:10.1109/83.784441
Chang SG, Cvetković Z, Vertterli M (2006) Locally adaptive wavelet-based image interpolation. IEEE Trans Image Process 15(6):1471–1485
Kinebuchi K, Muresan DD, Parks TW (2001) Image interpolation using wavelet-based hidden Markov trees. In: Proc of IEEE ICASSP’01, vol 3, pp 7–11
Chen TC, de Figueiredo RJP (1985) Two dimensional interpolation by generalized spline filters based on partial differential equation image models. IEEE Trans Acoust Speech Signal Process ASSP 33(3):631–642. doi:10.1109/TASSP.1985.1164588
Chen G, de Figueiredo RJP (1993) A unified approach to optimal image interpolation problems based on linear partial differential equation models. IEEE Trans Image Process 2(1):41–49. doi:10.1109/83.210864
Caselles V, Jean-Michael M, Sbert C (1998) An axiomatic approach to image interpolation. IEEE Trans Image Process 7(3):376–386. doi:10.1109/83.661188
Persona P, Malik J (1990) Scale-space and edge detection using anistropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639. doi:10.1109/34.56205
Shu-Jun Fu, Qiu-Qi Ruan (2004) An anisotropic diffusion equation for image magnification and noise removal. In: Proc of IEEE ICSP, vol 2, pp 1033–1036
Aly HA, Dubois E (2005) Image up-sampling using total-variation regularization with a new observation model. IEEE Trans Image Process 14(10):1647–1659. doi:10.1109/TIP.2005.851684
Strang G, Nguyen T (1996) Wavelets and filter banks. Wellesley-Cambridge Press, Wellesley
Rao RM, Bopardikar AS (1998) Wavelet transforms: introduction to theory & applications. Prentice-Hall, Englewood Cliffs
Daubechies I (1992) Ten lectures on wavelets. SIAM, New York
Romberg JK, Choi HC, Baraniuk RG (2001) Bayesian tree-structure image modeling using wavelet-domain hidden Markov models. IEEE Trans Image Process 10(7). doi:10.1109/83.931100
Crouse MS, Norwak RD, Baraniuk RG (1998) Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans Signal Process 46(4):886–902. doi:10.1109/78.668544
Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press
Plaziac N (1999) Image interpolation using neural networks. IEEE Trans Image Process 8:1647–1651. doi:10.1109/83.799893
Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiely-Interscience Press
Mallat S, Zhong S (1992) Characterization of signals from multiscale edges. IEEE Trans Pattern Anal Mach Intell 14(7):2207–2232. doi:10.1109/34.142909
Li X (2003) New results of phase shifting in the wavelet space. IEEE Signal Process Lett 10(7):193–195. doi:10.1109/LSP.2003.811587
Woo DH, Eom IK, Kim YS (2004) Image interpolation based on inter-scale dependency in wavelet domain. In: Proc. of IEEE ICIP’04, vol 3, pp 1687–1690, Oct 2004
Li X (2007) Image resolution enhancement via data-driven parametric models in the wavelet space. EURASIP J Image Video Process 2007(1):12
Huang S, Huang Y (1991) Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Trans Neural Netw 2(1):47–55. doi:10.1109/72.80290
Teoh EJ, Tan KC, Xiang C (2006) Estimating the number of hidden neurons in a feedforward network using the singular vector decomposition. IEEE Trans Neural Netw 17(6):1623–1629. doi:10.1109/TNN.2006.880582
Xiang C, Ding SQ, Lee TH (2005) Geometrical interpretation and architecture selection of MLP. IEEE Trans Neural Netw 16(1):84–96. doi:10.1109/TNN.2004.836197
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kim, S.S., Kim, Y.S. & Eom, I.K. Image interpolation using MLP neural network with phase compensation of wavelet coefficients. Neural Comput & Applic 18, 967–977 (2009). https://doi.org/10.1007/s00521-009-0233-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-009-0233-7