[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Image interpolation using MLP neural network with phase compensation of wavelet coefficients

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

When interpolating images in the wavelet domain, the main problem is how to estimate the finest detail coefficients. Wavelet coefficients across scales have an interscale dependency, and the dependency varies according to the local energy of the coefficients. This implies the possible existence of functional mappings from one scale to another scale. If we can estimate the mapping parameters from the observed coefficients, then it is possible to predict the finest detail coefficients. In this article, we use the multilayer perceptron (MLP) neural networks to learn a mapping from the coarser scale to the finer scale. When exploiting the MLP neural networks, phase uncertainty, a well-known drawback of wavelet transforms, makes it difficult for the networks to learn the interscale mapping. We solve this location ambiguity by using a phase-shifting filter. After the single-level phase compensation, a wavelet coefficient vector is assigned to one of the energy-dependent classes. Each class has its corresponding network. In the simulation results, we show that the proposed scheme outperforms the previous wavelet-domain interpolation method as well as the conventional spatial domain methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Blu T, Thevenaz P, Unser M (2004) Linear interpolation revitalized. IEEE Trans Image Process 13:710–719. doi:10.1109/TIP.2004.826093

    Article  MathSciNet  Google Scholar 

  2. Ramponi G (1999) Warped distance for space variant linear image interpolation. IEEE Trans Image Process 8:629–639. doi:10.1109/83.760311

    Article  Google Scholar 

  3. Khamy SE, Hadhoud MM, Dessouky MI, Salam BM, Abd El-Samie FE (2004) A new edge preserving pixel-by-pixel cubic image interpolation approach. In: NRSC, 16–18 Mar, 2004

  4. Algazi VR, Ford GE, Potharlanka R (1991) Directional interpolation of images based on visual properties and rank order filtering. In: Proc. of IEEE ICASSP’91, vol 4, pp 3005–3008, 1991

  5. Carrato S, Ramponi G, Marsi S (1996) Simple edge-sensitive image interpolation filter. In: Proc. of IEEE ICIP’96, vol 3, pp 711–714

  6. Allebach J, Wong PW (1996) Edge directed interpolation. In: Proc. of ICIP’96, vol 3, pp 707–710

  7. Jensen K, Anastassiou D (1995) Subpixel edge localization and the interpolation of still images. IEEE Trans Image Process 4:285–295. doi:10.1109/83.366477

    Article  Google Scholar 

  8. Li X, Orchard MT (2001) New edge-directed interpolation. IEEE Trans Image Process 10:1521–1527. doi:10.1109/83.951537

    Article  Google Scholar 

  9. Plaziac N (1999) Image interpolation using neural networks. IEEE Trans Image Process 8(11):1647–1651. doi:10.1109/83.799893

    Article  Google Scholar 

  10. Mitra SK, Li H, Lin I, Yu T (1991) A new class of nonlinear filters for image enhancement. Proc IEEE ICASSP 91:2525–2528

    Google Scholar 

  11. Ates HF, Orchard MT (2003) Image interpolation using wavelet-based contour estimation. In: Proc of IEEE ICASSP’03, vol 3, pp 109–112

  12. Carey WK, Chuang DB, Hemami SS (1999) Regularity-preserving interpolation. IEEE Trans Image Process 8(9):1293–1297. doi:10.1109/83.784441

    Google Scholar 

  13. Chang SG, Cvetković Z, Vertterli M (2006) Locally adaptive wavelet-based image interpolation. IEEE Trans Image Process 15(6):1471–1485

    Article  Google Scholar 

  14. Kinebuchi K, Muresan DD, Parks TW (2001) Image interpolation using wavelet-based hidden Markov trees. In: Proc of IEEE ICASSP’01, vol 3, pp 7–11

  15. Chen TC, de Figueiredo RJP (1985) Two dimensional interpolation by generalized spline filters based on partial differential equation image models. IEEE Trans Acoust Speech Signal Process ASSP 33(3):631–642. doi:10.1109/TASSP.1985.1164588

    Google Scholar 

  16. Chen G, de Figueiredo RJP (1993) A unified approach to optimal image interpolation problems based on linear partial differential equation models. IEEE Trans Image Process 2(1):41–49. doi:10.1109/83.210864

    Article  Google Scholar 

  17. Caselles V, Jean-Michael M, Sbert C (1998) An axiomatic approach to image interpolation. IEEE Trans Image Process 7(3):376–386. doi:10.1109/83.661188

    Google Scholar 

  18. Persona P, Malik J (1990) Scale-space and edge detection using anistropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639. doi:10.1109/34.56205

    Article  Google Scholar 

  19. Shu-Jun Fu, Qiu-Qi Ruan (2004) An anisotropic diffusion equation for image magnification and noise removal. In: Proc of IEEE ICSP, vol 2, pp 1033–1036

  20. Aly HA, Dubois E (2005) Image up-sampling using total-variation regularization with a new observation model. IEEE Trans Image Process 14(10):1647–1659. doi:10.1109/TIP.2005.851684

    Article  MathSciNet  Google Scholar 

  21. Strang G, Nguyen T (1996) Wavelets and filter banks. Wellesley-Cambridge Press, Wellesley

  22. Rao RM, Bopardikar AS (1998) Wavelet transforms: introduction to theory & applications. Prentice-Hall, Englewood Cliffs

  23. Daubechies I (1992) Ten lectures on wavelets. SIAM, New York

  24. Romberg JK, Choi HC, Baraniuk RG (2001) Bayesian tree-structure image modeling using wavelet-domain hidden Markov models. IEEE Trans Image Process 10(7). doi:10.1109/83.931100

  25. Crouse MS, Norwak RD, Baraniuk RG (1998) Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans Signal Process 46(4):886–902. doi:10.1109/78.668544

    Article  MathSciNet  Google Scholar 

  26. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press

  27. Plaziac N (1999) Image interpolation using neural networks. IEEE Trans Image Process 8:1647–1651. doi:10.1109/83.799893

    Article  Google Scholar 

  28. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiely-Interscience Press

  29. Mallat S, Zhong S (1992) Characterization of signals from multiscale edges. IEEE Trans Pattern Anal Mach Intell 14(7):2207–2232. doi:10.1109/34.142909

    Article  Google Scholar 

  30. Li X (2003) New results of phase shifting in the wavelet space. IEEE Signal Process Lett 10(7):193–195. doi:10.1109/LSP.2003.811587

    Article  Google Scholar 

  31. Woo DH, Eom IK, Kim YS (2004) Image interpolation based on inter-scale dependency in wavelet domain. In: Proc. of IEEE ICIP’04, vol 3, pp 1687–1690, Oct 2004

  32. Li X (2007) Image resolution enhancement via data-driven parametric models in the wavelet space. EURASIP J Image Video Process 2007(1):12

  33. Huang S, Huang Y (1991) Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Trans Neural Netw 2(1):47–55. doi:10.1109/72.80290

    Article  Google Scholar 

  34. Teoh EJ, Tan KC, Xiang C (2006) Estimating the number of hidden neurons in a feedforward network using the singular vector decomposition. IEEE Trans Neural Netw 17(6):1623–1629. doi:10.1109/TNN.2006.880582

    Article  Google Scholar 

  35. Xiang C, Ding SQ, Lee TH (2005) Geometrical interpretation and architecture selection of MLP. IEEE Trans Neural Netw 16(1):84–96. doi:10.1109/TNN.2004.836197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Kyu Eom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.S., Kim, Y.S. & Eom, I.K. Image interpolation using MLP neural network with phase compensation of wavelet coefficients. Neural Comput & Applic 18, 967–977 (2009). https://doi.org/10.1007/s00521-009-0233-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-009-0233-7

Keywords

Navigation