Abstract
The classical systems of building automation systems (BAS) have evolved from control of heating, ventilation and air-conditioning (HVAC). The wide use of fieldbus technology and powerful embedded systems has enabled new developments. Building automation is employed to integrate user requirements, system requirements and optimizations in order to maintain user comfort—with energy efficiency being a recently added optimization goal. The classic three-layer automation model is transferred into a service-oriented architecture (SOA) of objects. At the same time, the complexity increases as new services are added. Object-oriented solutions are an approach to cope with this. The basic design of controllers has become distributed and is adopting advanced methods. The resulting, highly integrated systems require a defense-in-depth strategy to ensure security. We take a look at the building services today and in the near future, highlight the strength of integrated building automation over different domains and industries and show the upcoming challenges for building automation systems.
Zusammenfassung
Die klassischen Systeme der Gebäudeautomation stammen aus dem Bereich Heizung, Lüftung, Klima (HLK). Der Einsatz von Feldbustechnologien, IP-basierten Netzen und leistungsfähigen Embedded-Systemen ist heute Stand der Technik. Die Gebäudeautomation deckt immer mehr Gebäudedienste ab, und durch gewerkeübergreifende Systeme werden neue Funktionen möglich. Durch vertikale Integration wird die bisherige Hierarchie der Automationspyramide weitgehend aufgelöst und in ein flaches, verteiltes System offener Protokolle und Funktionen überführt. Neben typischen Zielen, die Betriebseffizienz eines Gebäudes und den Komfort zu erhöhen, verlangen aktuelle Richtlinien darüber hinaus weitgehende Möglichkeiten zur Aufzeichnung, Protokollierung und Eingriffnahme für die Energieoptimierung in bestehenden und neuen Systemen. Die resultierenden, komplexen Systeme verlangen nach effizienten Methoden des Engineering. Die geforderte Offenheit legt außerdem wachsende Anforderungen an Sicherheitskriterien zu Grunde.
Similar content being viewed by others
Notes
At the time of this writing parts 2–4 have been published as an ISO/IEC standard, while final publication of part 1 is pending on IECQ to complete their process of administering unique node IDs.
References
Advanced building systems (2003): A technical guide for architects and engineers. Basel: Birkhäuser.
ANSI/ASHRAE Standard 55 (2010): thermal environmental conditions for human occupancy.
ANSI/CEA-852-B (2010): Tunneling device area network protocols over Internet protocol channels, Aug. 2010.
ANSI/EIA/CEA-709.1-A (1999): Control network protocol specification.
BACnet (2010): A data communication protocol for building automation and control networks, ANSI/ASHRAE Std. 135.
Burgstaller, W., Soucek, S., Palensky, P. (2005): Current challenges in abstracting datapoints. In Proc. of 6th IFAC international conference on fieldbus systems and their applications (pp. 40–47).
Dietrich, D., Bruckner, D., Zucker, G., Palensky, P. (2010): Communication and computation in buildings: a short introduction and overview. IEEE Trans. Ind. Electron., 57, 3577–3584.
Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Off. J. Eur. Union, 31, 2010.
EN 50090:2011: Home and Building Electronic Systems (HBES).
EN 13321-2:2005: Open data communication in building automation, controls and building management—home and building electronic systems—Part 2: KNXnet/IP communication.
EN 1434-3:1997: Heat meters—data exchange and interfaces.
Granzer, W., Praus, F., Kastner, W. (2010): Security in building automation systems. IEEE Trans. Ind. Electron., 57(11), 3622–3630.
IEC 60929:2003: AC-supplied electronic ballasts for tubular fluorescent lamps.
ISO 16484-2:2004: Building automation and control systems (BACS)—Part 2: Hardware.
ISO 16484-5:2010: Building automation and control systems—Part 5: Data communication protocol.
ISO 50001:2011: Energy management systems—requirements with guidance for use.
ISO/IEC 14543:2012: Information technology—home electronic system (HES) architecture.
ISO/IEC 14908:2012: Information technology—control network protocol.
Kastner, W., Neugschwandtner, G., Soucek, S., Newmann, H. M. (2005): Communication systems for building automation and control. Proc. IEEE, 93(6), 1178–1203.
Newman, H. M. (1994): Direct digital control of building systems: theory and practice. New York: Wiley.
OPC Foundation (2005): OPC XMLDA 1.00 Specification. www.opcfoundation.org.
Open building information exchange (2012): www.obix.org.
Palensky, P., Dietrich, D. (2011): Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Trans. Ind. Inform., 7, 381–388.
Rubio, B., Fuertes, J. M., Kahoraho, E., Perez Arzoz N. (1999): Performance evaluation of four field buses. In Proceedings of 7th IEEE international conference on emerging technologies and factory automation.
The SMI Group (2012): www.smi-group.com.
Thuillard, M., Ryser, P., Pfister G. (2001): Life safety and security systems. In O. Gassmann, H. Meixner (Eds.), Sensors in intelligent buildings. Sensors applications. Weinheim: Wiley-VCH.
Wong, J. K. W., Li, H., Wang, S. W. (2005): Intelligent building research: A review. Autom. Constr., 14(1), 143–159.
Zucker, G., Hettfleisch, C. (2010): Using simulation for optimized building operation. In Proceedings of the e-nova 2010, Pinkafeld, Austria.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Soucek, S., Zucker, G. Current developments and challenges in building automation. Elektrotech. Inftech. 129, 278–285 (2012). https://doi.org/10.1007/s00502-012-0013-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00502-012-0013-4