Zusammenfassung
Um die lokalisierte Lichtabsorption zu erhöhen und die Effizienz der extrem dünnen Solarzellen zu verbessern, ist die Nutzung der plasmonischen Strukturen einer der aussichtsreichsten Wege. Plasmonen sind eingebettete metallische Nanostrukturen, die es ermöglichen, einfallendes Licht im Sub-Mikrometerbereich zu lokalisieren und zu konzentrieren. Aktuelle Forschungsergebnisse haben dargelegt, dass die breitbandige optische Absorption in Dünnschicht-Solarzellen aufgrund der lokal erhöhten Feldstärke durch Oberflächenplasmonen verbessert werden kann. Dies führt zu kleineren Rekombinationsströmen, höheren Leerlaufspannungen, höheren Wirkungsgraden und sogar zu völlig neuen Konzepten für Solarzellen. Diese Review-Publikation präsentiert den aktuellen Stand der Forschung auf dem Gebiet der Nahfeld-Licht-Konzentration sowie effektives Licht-Trapping bei unterschiedlichen Zellen-Designs. Weiters werden aktuelle signifikante Verbesserungen der Lichtabsorption sowie des Gesamtwirkungsgrades für verschiedene Arten von Dünnschicht-Zellen (z. B. a-Si, organischen, GaAs) dargestellt.
Summary
One of the most promising ways to enhance the localized light absorption and to improve the efficiency of extremely thin solar cells is to use plasmonic structures. Plasmons are embedded metal nanostructures which can localize incident light on a sub-micrometric scale enabling light concentration and trapping. The current research shows that the optical broadband absorption in thin-film solar cells can be enhanced due to the local field enhancement by surface plasmons, leading to lower recombination currents, higher open circuit voltages, higher conversion efficiencies and even completely new solar-cell designs. This review paper will present the current research on different thin cell designs; on both near-field light concentration close to the nanoparticles resonance and effective light trapping. Recent significant enhancements of light absorption as well as overall efficiency enhancements have been reported for different types of thin film cells (e.g. a-Si, organic, GaAs).
References
Atwater, H. A., Polman, A. (2010): Plasmonics for improved photovoltaic devices. Nat. Mater., 9 (3): 205–213
Beck, F. J., Polman, A., Catchpole, K. R. (2009): Tunable light trapping for solar cells using localized surface plasmons. J. Appl. Phys., 105: 114310-1-114310-7
Campbell, P., Green, M. A. (1986): The limiting efficiency of silicon solar-cells under concentrated sunlight. IEEE Trans. Electron. Dev., 33 (2): 234–239
Catchpole, K. R., Polman, A. (2008): Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett., 93: 191113-1-191113-3
Cole, J. R., Halas, N. J. (2006): Optimized plasmonic nanoparticle distributions for solar spectrum harvesting. Appl. Phys. Lett., 89: 153120-1-153120-3
Dagkaldiran, Ü., Gordijn, A., Finger, F., Yates, H. M., Evans, P., Sheel, D. W., Remes, Z., Vanecek, M. (2009): Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD. Mater. Sci. Eng. B., 159–160: 6–9
Eisele, C., Nebel, C. E., Stutzmann, M. (2001): Periodic light coupler gratings in amorphous thin film solar cells. J. Appl. Phys., 89 (12): 7722–7726
English, A., Cheng, Ch.-W., Lowe, L. II, Shih, M.-H., Kuang, W. (2011): Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating. Applied Physics Letters, 98: 191113
Fahr, S., Rockstuhl, C., Lederer, F. (2008): Engineering the randomness for enhanced absorption in solar cells. Appl. Phys. Lett., 92 (17): 171114
Ferry, V. E., Munday, J. N., Atwater, H. A. (2010): Design considerations for plasmonic photovoltaics. Adv. Mater., 22: 4794–4808
Ferry, V. E., Sweatlock, L. A., Pacifici, D., Atwater, H. A. (2008): Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells. Nano Lett., 8: 4391
Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Schropp, R. E. I., Atwater, H. A., Polman, A. (2009): Improved redresponse in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Appl. Phys. Lett., 95 (18): 183503
Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Verhagen, E., Walters, R. J., Schropp, R. E. I., Atwater, H. A., Polman, A. (2010): Light trapping in ultrathin plasmonic solar cells. Opt. Exp., 18 (S2): A237
Fu, Q., Sun, W. (2001): Mie theory for light scattering by a spherical particle in an absorbing medium. Applied Optics, 40 (9): 1354–1361
Guo, L. J., (2007): Nanoimprint lithography: methods and material requirements. Adv. Mater., 19: 495–513
Haug, F.-J., Söderström, K., Naqavi, A., Ballif, C. (2011): Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture. Journal of Applied Physics, 109: 084516
Isabella, O., Campa, A., Heijna, M. C. R., Soppa, W., van Ervan, R., Franken, R. H., Borg, H., Zeman, M. (2008): Diffraction gratings for light trapping in thin-film silicon solar cells. Conference Record of the 23rd European Photovoltaic Solar Energy Conference, 2320–2324
Kim, S.-S., Na, S.-I., Jo, J., Kim, D.-Y., Nah, Y.-Ch. (2008): Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Applied Physics Letters, 93: 073307
Kochergin, V., Neely, L., Jao, Ch.-Y., Robinson, H. D. (2011): Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices. Appl. Phys. Lett., 98 (13): 133305
Krč, J., Smole, F., Topič, M. (2003): Potential of light trapping in microcrystalline silicon solar cells with textured substrates. Prog. Photovolt. Res., Appl., 11 (7): 429–436
le Feber, B., Cesario, J., Zeijlemaker, H., Rotenberg, N., Kuipers, L. (2011): Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation. Applied Physics Letters, 98: 201108
Lechner, P., Frammelsberger, W., Psyk, W., Geyer, R., Maurus, H., Lundszien, D., Watner, H., Eichhorn, B. (2008): Status of performance of thin film silicon solar cells and modules. Conference record of the 23rd European Photovoltaic Solar Energy Conference, 2023–2026
Li, H.-M., Zhang, G., Yang, Ch., Lee, D.-Y., Lim, Y.-D., Shen, T.-Z., Yoo, W. J., Park, Y. J., Kim, H., Cha, S. N., Kim, J. M. (2011): Enhancement of light absorption using high-k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells. Journal of Applied Physics, 109: 093516
Losurdo, M., Giangregorio, M. M., Bianco, G. V., Sacchetti, A., Capezzuto, P., Bruno, G. (2009): Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance. Solar Energy Materials & Solar Cells, 93: 1749–1754
Luo, P. Q., Moulin, E., Sukmanowski, J., Royer, F. X., Dou, X. M., Stiebig, H. (2009): Enhanced infrared response of ultra thin amorphous silicon photosensitive devices with Ag nanoparticles. Thin Solid Films, 517: 6256–6259
Matheu, P., Lim, S. H., Derkacs, D., McPheeters, C., Yu, E. T. (2008): Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl. Phys. Lett., 93 (11): 113108
Meillaud, F., Shah, A., Droz, C., Vallat-Sauvain, E., Miazza, C. (2006): Efficiency limits for single-junction and tandem solar cells. Solar Energy Materials and Solar Cells, 90 (18–19): 2952–2959
Meziani, M. J., Bunker, Ch. E., Lu, F., Li, H., Wang, W., Guliants, E. A., Quinn, R. A., Sun, Y.-P. (2009): Formation and Properties of Stabilized Aluminum Nanoparticles. ACS Applied Materials & Interfaces, 1 (3): 703–709
Min, Ch., Li, J., Veronis, G., Lee, J.-Y., Fan, Sh., Peumans, P. (2010): Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Appl. Phys. Lett., 96: 133302
Nakayama, K., Tanabe, K., Atwater, H. A. (2008): Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett., 93 (12): 121904
Pala, R. A., White, J., Barnard, E., Liu, J., Brongersma, M. L. (2009): Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater., 21: 3504–3509
Pala, R. A., White, J., Bernard, E., Liu, J., Brongersma, M. L. (2009): Design of plasmonic thin-film solar cells with broad band absorption enhancement. Adv. Mater., 21: 1–6
Pillai, S., Catchpole, K. R., Trupke, T., Green, M. A. (2007): Surface plasmon enhanced silicon solar cells. J. Appl. Phys., 101 (9): 093105
Polyakov, A., Cabrini, S., Dhuey, S., Harteneck, B., Schuck, P. J., Padmore, H. A. (2011): Plasmonic light trapping in nanostructured metal surfaces. Applied Physics Letters, 98: 203104
Pryce, I. M., Koleske, D. D., Fischer, A. J., Atwater, H. A. (2010): Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Appl. Phys. Lett., 96 (15): 153501
Saeta, P. N., Ferry, V. E., Pacifici, D., Munday, J. N., Atwater, H. A. (2009): How much can guided modes enhance absorption in thin solar cells? Opt. Exp., 17: 20975–20990
Shah, A. V., Schade, H., Vanecek, M., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U., Droz, C., Bailat, J. (2004): Thin-film Silicon Solar Cell Technology. Prog. Photovolt. Res. Appl., 12 (23): 113–142
Stuart, C., Chen, Y. (2009): Roll in and roll out: a path to high-throughput nanoimprint lithography. ACS Nano., 3 (8): 2062–2064
Sudiarta, I. W., Chylek, P. (2001): Mie-scattering formalism for spherical particles embedded in an absorbing medium. J. Opt. Soc. Am. A., 18: 1275–1278
Verschuuren, M., van Sprang, H. (2007): 3D photonic structures by sol-gel imprint lithography. Mater. Res. Soc. Sym. Proc., 1002: N03–N05
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Adamovic, N., Schmid, U. Potential of plasmonics in photovoltaic solar cells. Elektrotech. Inftech. 128, 342–347 (2011). https://doi.org/10.1007/s00502-011-0043-3
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s00502-011-0043-3