[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Potential of plasmonics in photovoltaic solar cells

Potential der Plasmonik in photovoltaischen Solarzellen

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Zusammenfassung

Um die lokalisierte Lichtabsorption zu erhöhen und die Effizienz der extrem dünnen Solarzellen zu verbessern, ist die Nutzung der plasmonischen Strukturen einer der aussichtsreichsten Wege. Plasmonen sind eingebettete metallische Nanostrukturen, die es ermöglichen, einfallendes Licht im Sub-Mikrometerbereich zu lokalisieren und zu konzentrieren. Aktuelle Forschungsergebnisse haben dargelegt, dass die breitbandige optische Absorption in Dünnschicht-Solarzellen aufgrund der lokal erhöhten Feldstärke durch Oberflächenplasmonen verbessert werden kann. Dies führt zu kleineren Rekombinationsströmen, höheren Leerlaufspannungen, höheren Wirkungsgraden und sogar zu völlig neuen Konzepten für Solarzellen. Diese Review-Publikation präsentiert den aktuellen Stand der Forschung auf dem Gebiet der Nahfeld-Licht-Konzentration sowie effektives Licht-Trapping bei unterschiedlichen Zellen-Designs. Weiters werden aktuelle signifikante Verbesserungen der Lichtabsorption sowie des Gesamtwirkungsgrades für verschiedene Arten von Dünnschicht-Zellen (z. B. a-Si, organischen, GaAs) dargestellt.

Summary

One of the most promising ways to enhance the localized light absorption and to improve the efficiency of extremely thin solar cells is to use plasmonic structures. Plasmons are embedded metal nanostructures which can localize incident light on a sub-micrometric scale enabling light concentration and trapping. The current research shows that the optical broadband absorption in thin-film solar cells can be enhanced due to the local field enhancement by surface plasmons, leading to lower recombination currents, higher open circuit voltages, higher conversion efficiencies and even completely new solar-cell designs. This review paper will present the current research on different thin cell designs; on both near-field light concentration close to the nanoparticles resonance and effective light trapping. Recent significant enhancements of light absorption as well as overall efficiency enhancements have been reported for different types of thin film cells (e.g. a-Si, organic, GaAs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  • Atwater, H. A., Polman, A. (2010): Plasmonics for improved photovoltaic devices. Nat. Mater., 9 (3): 205–213

    Article  Google Scholar 

  • Beck, F. J., Polman, A., Catchpole, K. R. (2009): Tunable light trapping for solar cells using localized surface plasmons. J. Appl. Phys., 105: 114310-1-114310-7

  • Campbell, P., Green, M. A. (1986): The limiting efficiency of silicon solar-cells under concentrated sunlight. IEEE Trans. Electron. Dev., 33 (2): 234–239

    Article  Google Scholar 

  • Catchpole, K. R., Polman, A. (2008): Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett., 93: 191113-1-191113-3

  • Cole, J. R., Halas, N. J. (2006): Optimized plasmonic nanoparticle distributions for solar spectrum harvesting. Appl. Phys. Lett., 89: 153120-1-153120-3

  • Dagkaldiran, Ü., Gordijn, A., Finger, F., Yates, H. M., Evans, P., Sheel, D. W., Remes, Z., Vanecek, M. (2009): Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD. Mater. Sci. Eng. B., 159–160: 6–9

    Article  Google Scholar 

  • Eisele, C., Nebel, C. E., Stutzmann, M. (2001): Periodic light coupler gratings in amorphous thin film solar cells. J. Appl. Phys., 89 (12): 7722–7726

    Article  Google Scholar 

  • English, A., Cheng, Ch.-W., Lowe, L. II, Shih, M.-H., Kuang, W. (2011): Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating. Applied Physics Letters, 98: 191113

    Article  Google Scholar 

  • Fahr, S., Rockstuhl, C., Lederer, F. (2008): Engineering the randomness for enhanced absorption in solar cells. Appl. Phys. Lett., 92 (17): 171114

    Article  Google Scholar 

  • Ferry, V. E., Munday, J. N., Atwater, H. A. (2010): Design considerations for plasmonic photovoltaics. Adv. Mater., 22: 4794–4808

    Article  Google Scholar 

  • Ferry, V. E., Sweatlock, L. A., Pacifici, D., Atwater, H. A. (2008): Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells. Nano Lett., 8: 4391

    Article  Google Scholar 

  • Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Schropp, R. E. I., Atwater, H. A., Polman, A. (2009): Improved redresponse in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Appl. Phys. Lett., 95 (18): 183503

    Article  Google Scholar 

  • Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Verhagen, E., Walters, R. J., Schropp, R. E. I., Atwater, H. A., Polman, A. (2010): Light trapping in ultrathin plasmonic solar cells. Opt. Exp., 18 (S2): A237

    Article  Google Scholar 

  • Fu, Q., Sun, W. (2001): Mie theory for light scattering by a spherical particle in an absorbing medium. Applied Optics, 40 (9): 1354–1361

    Article  Google Scholar 

  • Guo, L. J., (2007): Nanoimprint lithography: methods and material requirements. Adv. Mater., 19: 495–513

    Article  Google Scholar 

  • Haug, F.-J., Söderström, K., Naqavi, A., Ballif, C. (2011): Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture. Journal of Applied Physics, 109: 084516

    Article  Google Scholar 

  • Isabella, O., Campa, A., Heijna, M. C. R., Soppa, W., van Ervan, R., Franken, R. H., Borg, H., Zeman, M. (2008): Diffraction gratings for light trapping in thin-film silicon solar cells. Conference Record of the 23rd European Photovoltaic Solar Energy Conference, 2320–2324

  • Kim, S.-S., Na, S.-I., Jo, J., Kim, D.-Y., Nah, Y.-Ch. (2008): Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Applied Physics Letters, 93: 073307

    Article  Google Scholar 

  • Kochergin, V., Neely, L., Jao, Ch.-Y., Robinson, H. D. (2011): Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices. Appl. Phys. Lett., 98 (13): 133305

    Article  Google Scholar 

  • Krč, J., Smole, F., Topič, M. (2003): Potential of light trapping in microcrystalline silicon solar cells with textured substrates. Prog. Photovolt. Res., Appl., 11 (7): 429–436

    Article  Google Scholar 

  • le Feber, B., Cesario, J., Zeijlemaker, H., Rotenberg, N., Kuipers, L. (2011): Exploiting long-ranged order in quasiperiodic structures for broadband plasmonic excitation. Applied Physics Letters, 98: 201108

    Article  Google Scholar 

  • Lechner, P., Frammelsberger, W., Psyk, W., Geyer, R., Maurus, H., Lundszien, D., Watner, H., Eichhorn, B. (2008): Status of performance of thin film silicon solar cells and modules. Conference record of the 23rd European Photovoltaic Solar Energy Conference, 2023–2026

  • Li, H.-M., Zhang, G., Yang, Ch., Lee, D.-Y., Lim, Y.-D., Shen, T.-Z., Yoo, W. J., Park, Y. J., Kim, H., Cha, S. N., Kim, J. M. (2011): Enhancement of light absorption using high-k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells. Journal of Applied Physics, 109: 093516

    Article  Google Scholar 

  • Losurdo, M., Giangregorio, M. M., Bianco, G. V., Sacchetti, A., Capezzuto, P., Bruno, G. (2009): Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance. Solar Energy Materials & Solar Cells, 93: 1749–1754

    Article  Google Scholar 

  • Luo, P. Q., Moulin, E., Sukmanowski, J., Royer, F. X., Dou, X. M., Stiebig, H. (2009): Enhanced infrared response of ultra thin amorphous silicon photosensitive devices with Ag nanoparticles. Thin Solid Films, 517: 6256–6259

    Article  Google Scholar 

  • Matheu, P., Lim, S. H., Derkacs, D., McPheeters, C., Yu, E. T. (2008): Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl. Phys. Lett., 93 (11): 113108

    Article  Google Scholar 

  • Meillaud, F., Shah, A., Droz, C., Vallat-Sauvain, E., Miazza, C. (2006): Efficiency limits for single-junction and tandem solar cells. Solar Energy Materials and Solar Cells, 90 (18–19): 2952–2959

    Article  Google Scholar 

  • Meziani, M. J., Bunker, Ch. E., Lu, F., Li, H., Wang, W., Guliants, E. A., Quinn, R. A., Sun, Y.-P. (2009): Formation and Properties of Stabilized Aluminum Nanoparticles. ACS Applied Materials & Interfaces, 1 (3): 703–709

    Article  Google Scholar 

  • Min, Ch., Li, J., Veronis, G., Lee, J.-Y., Fan, Sh., Peumans, P. (2010): Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Appl. Phys. Lett., 96: 133302

    Article  Google Scholar 

  • Nakayama, K., Tanabe, K., Atwater, H. A. (2008): Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett., 93 (12): 121904

    Article  Google Scholar 

  • Pala, R. A., White, J., Barnard, E., Liu, J., Brongersma, M. L. (2009): Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater., 21: 3504–3509

    Article  Google Scholar 

  • Pala, R. A., White, J., Bernard, E., Liu, J., Brongersma, M. L. (2009): Design of plasmonic thin-film solar cells with broad band absorption enhancement. Adv. Mater., 21: 1–6

    Article  Google Scholar 

  • Pillai, S., Catchpole, K. R., Trupke, T., Green, M. A. (2007): Surface plasmon enhanced silicon solar cells. J. Appl. Phys., 101 (9): 093105

    Article  Google Scholar 

  • Polyakov, A., Cabrini, S., Dhuey, S., Harteneck, B., Schuck, P. J., Padmore, H. A. (2011): Plasmonic light trapping in nanostructured metal surfaces. Applied Physics Letters, 98: 203104

    Article  Google Scholar 

  • Pryce, I. M., Koleske, D. D., Fischer, A. J., Atwater, H. A. (2010): Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Appl. Phys. Lett., 96 (15): 153501

    Article  Google Scholar 

  • Saeta, P. N., Ferry, V. E., Pacifici, D., Munday, J. N., Atwater, H. A. (2009): How much can guided modes enhance absorption in thin solar cells? Opt. Exp., 17: 20975–20990

    Article  Google Scholar 

  • Shah, A. V., Schade, H., Vanecek, M., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U., Droz, C., Bailat, J. (2004): Thin-film Silicon Solar Cell Technology. Prog. Photovolt. Res. Appl., 12 (23): 113–142

    Article  Google Scholar 

  • Stuart, C., Chen, Y. (2009): Roll in and roll out: a path to high-throughput nanoimprint lithography. ACS Nano., 3 (8): 2062–2064

    Article  Google Scholar 

  • Sudiarta, I. W., Chylek, P. (2001): Mie-scattering formalism for spherical particles embedded in an absorbing medium. J. Opt. Soc. Am. A., 18: 1275–1278

    Article  Google Scholar 

  • Verschuuren, M., van Sprang, H. (2007): 3D photonic structures by sol-gel imprint lithography. Mater. Res. Soc. Sym. Proc., 1002: N03–N05

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamovic, N., Schmid, U. Potential of plasmonics in photovoltaic solar cells. Elektrotech. Inftech. 128, 342–347 (2011). https://doi.org/10.1007/s00502-011-0043-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-011-0043-3

Schlüsselwörter

Keywords

Navigation