[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Tactical maneuver trajectory optimization for unmanned combat aerial vehicle using improved differential evolution

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Autonomous air combat is an inevitable trend in the development of unmanned combat aerial vehicle (UCAV) equipment. Its purpose is to generate maneuver trajectory so that UCAVs obtain better air combat situation. Therefore, aiming to solve a tactical maneuver trajectory optimization problem for an UCAV in autonomous air combat, this paper proposed a novel method by converting the problem to an optimization problem of characteristic parameters. On the one hand, the paper analyses the tactical maneuver trajectory and combines the situation evaluation model to construct a tactical maneuver trajectory optimization function based on characteristic parameters. On the other hand, multi-population rotation strategy differential evolution (MPRDE) algorithm is designed to search for the optimal characteristic parameters. The experimental results showed that the MPRDE algorithm has outstanding performance in convergence speed, global optimization ability and robustness, and the method based on characteristic parameters could effectively and quickly represent the tactical maneuver trajectory of UCAV by using MPRDE. Meanwhile, it satisfies the real-time requirements for generating tactical manoeuvring trajectory for UCAV autonomous air combat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Reilly MB, Lisa Ventre WA (2016) Beyond video games: new artificial intelligence beats tactical experts in combat simulation. Report at http://magazine.uc.edu/editors_picks/recent_features/alpha.html

  • Austin F, Carbone G, Falco M, Hinz H, Lewis M (1987) Automated maneuvering decisions for air-to-air combat. In: Navigation and control conference. https://doi.org/10.2514/6.1987-2393

  • Austin F, Carbone G, Hinz H, Lewis M, Falco M (1990) Game theory for automated maneuvering during air-to-air combat. J Guid Control Dyn 13(6):1143–1149

    Article  MATH  Google Scholar 

  • Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657

    Article  Google Scholar 

  • Dali D, Jie W, Kangsheng D, Shuo KU (2019) Rapid generation method of UCAV tactical maneuver trajectory based on RBF network. Syst Eng Electron 41(01):101–109

    Google Scholar 

  • Darby CL, Hager WW, Rao AV (2011) Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J Spacecr Rockets 48(3):433–445

    Article  Google Scholar 

  • Dorling K, Heinrichs J, Messier GG, Magierowski S (2016) Vehicle routing problems for drone delivery. IEEE Trans Syst Man Cybern Syst 47(1):1–16

    Google Scholar 

  • Epitropakis MG, Plagianakos VP, Vrahatis MN (2009) Evolutionary adaptation of the differential evolution control parameters. In: Eleventh conference on congress on evolutionary computation. IEEE Press

  • Ernest N, Cohen K, Kivelevitch E, Schumacher C, Casbeer D (2015) Genetic fuzzy trees and their application towards autonomous training and control of a squadron of unmanned combat aerial vehicles. Unmanned Syst 03(03):185–204

    Article  Google Scholar 

  • Fu Y, Ding M, Zhou C, Hu H (2013) Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization. IEEE Trans Syst Man Cybern Syst 43(6):1451–1465

    Article  Google Scholar 

  • Herbst WB (1982) Dynamics of air combat. J Aircr 20(7):594–598

    Article  Google Scholar 

  • Ho-Huu V, Nguyen-Thoi T, Vo-Duy T, Nguyen-Trang T (2016) An adaptive elitist differential evolution for optimization of truss structures with discrete design variables. Comput Struct 165:59–75

    Article  Google Scholar 

  • Kabamba PT, Meerkov SM, Zeitz FH (2006) Optimal path planning for unmanned combat aerial vehicles to defeat radar tracking. J Guid Control Dyn 29(2):279–288

    Article  Google Scholar 

  • Kontogiannis SG, Ekaterinaris JA (2013) Design, performance evaluation and optimization of a uav. Aerosp Sci Technol 29(1):339–350

    Article  Google Scholar 

  • Kothari M, Postlethwaite I (2013) A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees. J Intell Robot Syst 71(2):231–253

    Article  Google Scholar 

  • Li P, Duan HB (2012) Path planning of unmanned aerial vehicle based on improved gravitational search algorithm. Sci China Technol Sci 55(10):2712–2719

    Article  Google Scholar 

  • Li YL, Zhang J (2011) A new differential evolution algorithm with dynamic population partition and local restart. In: 13th annual conference on genetic and evolutionary computation. ACM Press

  • Liu W, Zheng Z, Cai K (2013) Adaptive path planning for unmanned aerial vehicles based on bi-level programming and variable planning time interval. Chin J Aeronaut 26(3):646–660

    Article  Google Scholar 

  • Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696

    Article  Google Scholar 

  • Maurovic I, Seder M, Lenac K, Petrovic I (2017) Path planning for active SLAM based on the D* algorithm with negative edge weights. IEEE Trans Syst Man Cybern Syst 48(8):1321–1331

    Article  Google Scholar 

  • Mcgrew JS, How JP, Williams B, Roy N (2010) Air-combat strategy using approximate dynamic programming. J Guid Control Dyn 33(5):1641–1654

    Article  Google Scholar 

  • Mezuramontes E, Velazquezreyes J, Coello Coello C (2009) Modified differential evolution for constrained optimization. In: IEEE congress on evolutionary computation. IEEE

  • Parouha RP, Das KN (2015) A memory based differential evolution algorithm for unconstrained optimization. Appl Soft Comput 38:501–517

    Article  Google Scholar 

  • Poikolainen I, Neri F, Caraffini F (2015) Cluster-based population initialization for differential evolution frameworks. Inf Sci 297:216–235

    Article  Google Scholar 

  • Preuss M (2009) Adaptability of algorithms for real-valued optimization. Appl Evolut Comput 5484:665–674

    Article  Google Scholar 

  • Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evolut Comput 13(2):398–417

    Article  Google Scholar 

  • Ronkkonen J, Kukkonen S, Price KV (2005) Real-parameter optimization with differential evolution. In: 2005 IEEE congress on evolutionary computation, 2005. IEEE

  • Ross IM, Karpenko M (2012) A review of pseudospectral optimal control: from theory to flight. Annu Rev Control 36(2):182–197

    Article  Google Scholar 

  • Storn R (1996) On the usage of differential evolution for function optimization. In: 1996 Biennial conference of the North American fuzzy information processing society, 1996. NAFIPS. IEEE Xplore

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Sun TY, Tsai SJ, Lee YN, Yang SM, Ting SH (2006) The study on intelligent advanced fighter air combat decision support system. In: 2006 IEEE international conference on information reuse and integration. IEEE

  • Virtanen K, Raivio T, Hämäläinen RP (1999) Decision theoretical approach to pilot simulation. J Aircr 36(4):632–641

    Article  Google Scholar 

  • Virtanen K, Raivio T, Raimo PH (2004) Modeling pilot’ s sequential maneuvering decisions by a multistage influence diagram. J Guid Control Dyn 27(4):665–677

    Article  Google Scholar 

  • Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Press, Piscataway

    Book  Google Scholar 

  • Wang Y, Li HX, Huang T, Li L (2014) Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Appl Soft Comput J 18(1):232–247

    Article  Google Scholar 

  • Wang GG, Chu HCE, Mirjalili S (2016) Three-dimensional path planning for UCAV using an improved bat algorithm. Aerosp Sci Technol 49:231–238

    Article  Google Scholar 

  • Xuan YB, Huang CQ, Li WX (2011) Air combat situation assessment by gray fuzzy bayesian network. Appl Mech Mater 69:114–119

    Article  Google Scholar 

  • Yao P, Wang H, Su Z (2016) Cooperative path planning with applications to target tracking and obstacle avoidance for multi-UAVs. Aerosp Sci Technol 54:10–22

    Article  Google Scholar 

  • Yaoluo H, Ying N, Shaodong C, Quanxin D, Shengliang W (2015) Dynamic attack zone of air-to-air missile after being launched in random wind field. Chin J Aeronaut 28(5):1519–1528

    Article  Google Scholar 

  • Yongjun W, Jiang D, Xiaodong L, Lixin Z (2015) Identification and standardization of maneuvers based upon operational flight data. Chin J Aeronaut 28(1):133–140

    Article  Google Scholar 

  • Zhang J (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13(5):945–958

    Article  Google Scholar 

  • Zhang X, Duan H (2015) An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning. Appl Soft Comput 26:270–284

    Article  Google Scholar 

  • Zhong Y, Liu J, Yang L, Shen G (2008) Maneuver library and integrated control system for autonomous close-in air combat. Acta Aeronautica et Astronautica Sinica 29:114–121

    Google Scholar 

  • Zielinski K, Weitkemper P, Laur R, Kammeyer KD (2006) Parameter study for differential evolution using a power allocation problem including interference cancellation. In: 2006 IEEE congress on evolutionary computation, 2006. CEC. IEEE

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61601505), the Aeronautical Science Foundation of China (20155196022) and the Shaanxi Natural Science Foundation of China (2016JQ6050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangsheng Dong.

Ethics declarations

Conflict of interest

We all declare that we have no conflict of interest in this paper.

Additional information

Communicated by B. B. Gupta.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Dong, K., Yan, T. et al. Tactical maneuver trajectory optimization for unmanned combat aerial vehicle using improved differential evolution. Soft Comput 24, 5959–5970 (2020). https://doi.org/10.1007/s00500-019-04522-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04522-1

Keywords

Navigation