[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Cost function based on hidden Markov models for parameter estimation of chaotic systems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this note, we deal with parameter estimation methods of chaotic systems. The parameter estimation of the chaotic systems has some significant issues due to their butterfly effects. It can be formulated as an optimization problem and needs a suitable cost function. In this paper, we propose a new cost function based on a hidden Markov model which is a statistical tool for modeling of time series data. It can model dynamical characteristics of the chaotic systems. Moreover, the use of dynamical features of their strange attractors is investigated to achieve a better cost function in the procedure of parameter estimation. Our experimental results indicate the success of the proposed cost function in the one-dimensional parameter estimation of a new four-dimensional chaotic system and Lorenz system as a well-known three-dimensional chaotic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bao B, Jiang T, Xu Q, Chen M, Wu H, Hu Y (2016) Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn 86:1711–1723

    Article  Google Scholar 

  • Barati K, Jafari S, Sprott JC, Pham V-T (2016) Simple chaotic flows with a curve of equilibria. Int J Bifurcat Chaos 26:1630034

    Article  MathSciNet  MATH  Google Scholar 

  • Baum LE, Petrie T (1966) Statistical inference for probabilistic functions of finite state Markov chains. Ann Math Stat 37:1554–1563

    Article  MathSciNet  MATH  Google Scholar 

  • Bird S (2006) NLTK: the natural language toolkit. In: Proceedings of the COLING/ACL on interactive presentation sessions. Association for computational linguistics, pp 69–72

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    MATH  Google Scholar 

  • Breslin C (2008) Generation and combination of complementary systems for automatic speech recognition. Dissertation, University of Cambridge

  • Chaudhuri U, Prasad A (2014) Complicated basins and the phenomenon of amplitude death in coupled hidden attractors. Phys Lett A 378:713–718

    Article  MathSciNet  MATH  Google Scholar 

  • Ethier SN, Kurtz TG (2009) Markov processes: characterization and convergence. Wiley, New York

    MATH  Google Scholar 

  • Furui S (1986) Speaker-independent isolated word recognition using dynamic features of speech spectrum. IEEE Trans Acoust Speech Signal Process 34:52–59

    Article  Google Scholar 

  • Gotmare A, Patidar R, George NV (2015) Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model. Expert Syst Appl 42:2538–2546

    Article  Google Scholar 

  • Hilborn RC (2000) Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford, New York

    Book  MATH  Google Scholar 

  • Holmes WJ, Russell MJ (1999) Probabilistic-trajectory segmental HMMs. Comput Speech Lang 13:3–37

    Article  Google Scholar 

  • Jafari S, Hashemi Golpayegani SMR, Jafari AH, Gharibzadeh S (2012) Some remarks on chaotic systems. Int J Gen Syst 41:329–330

    Article  MATH  Google Scholar 

  • Jafari S, Hashemi Golpayegani SMR, Daliri A (2013a) Comment on ‘Parameters identification of chaotic systems by quantum-behaved particle swarm optimization’ [Int. J. Comput. Math. 86 (12)(2009), pp. 2225–2235]. Int J Comput Math 90:903–905

    Article  MathSciNet  Google Scholar 

  • Jafari S, Sprott JC, Hashemi Golpayegani SMR (2013c) Elementary quadratic chaotic flows with no equilibria. Phys Lett A 377:699–702

    Article  MathSciNet  Google Scholar 

  • Jafari S, Sprott JC, Pham V-T, Golpayegani SMRH, Jafari AH (2014) A new cost function for parameter estimation of chaotic systems using return maps as fingerprints. Int J Bifurcat Chaos 24:1450134

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari S, Sprott J, Molaie M (2016a) A simple chaotic flow with a plane of equilibria. Int J Bifurcat Chaos 26:1650098

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari S, Sprott JC, Pham V-T, Volos C, Li C (2016b) Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dyn 86:1349–1358

    Article  Google Scholar 

  • Jafari S, Hashemi Golpayegani SMR, Rasoulzadeh Darabad M (2013b) Comment on “Parameter identification and synchronization of fractional-order chaotic systems” [Commun Nonlinear Sci Numer Simulat 2012; 17: 305–16]. Commun Nonlinear Sci Numer Simul 18:811–814

  • Kantz H, Schreiber T (2004) Nonlinear time series analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Kennedy J (2011) Particle swarm optimization. In: Sammut C, Webb GI (eds) Encyclopedia of machine learning. Springer, Boston, MA

    Google Scholar 

  • Khoubrouy SA, Hansen JH (2016) Microphone array processing strategies for distant-based automatic speech recognition. IEEE Signal Process Lett 23:1344–1348

    Article  Google Scholar 

  • Lao S-K, Shekofteh Y, Jafari S, Sprott JC (2014) Cost function based on gaussian mixture model for parameter estimation of a chaotic circuit with a hidden attractor. Int J Bifurcat Chaos 24:1450010

    Article  MathSciNet  MATH  Google Scholar 

  • Lee L, Le H, Jean F (2017) Improved hidden Markov model adaptation method for reduced frame rate speech recognition. Electron Lett 53(14):962–964

    Article  Google Scholar 

  • Leonov GA, Kuznetsov NV (2013) Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurcat Chaos 23:1330002

    Article  MathSciNet  MATH  Google Scholar 

  • Leonov G, Kuznetsov N, Vagaitsev V (2011) Localization of hidden Chua’s attractors. Phys Lett A 375:2230–2233

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Yin M (2014) Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn 77:61–71

    Article  MathSciNet  Google Scholar 

  • Li L, Yang Y, Peng H, Wang X (2006) Parameters identification of chaotic systems via chaotic ant swarm. Chaos Solitons Fractals 28:1204–1211

    Article  MATH  Google Scholar 

  • Molaie M, Jafari S, Sprott JC, Hashemi Golpayegani SMR (2013) Simple chaotic flows with one stable equilibrium. Int J Bifurcat Chaos 23:1350188

    Article  MathSciNet  MATH  Google Scholar 

  • Mustafa MK, Allen T, Appiah K (2017) A comparative review of dynamic neural networks and hidden Markov model methods for mobile on-device speech recognition. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3028-2

    Google Scholar 

  • Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196

    Article  MathSciNet  MATH  Google Scholar 

  • Panahi S, Jafari S, Pham V-T, Kingni ST, Zahedi A, Sedighy SH (2016) Parameter identification of a chaotic circuit with a hidden attractor using Krill herd optimization. Int J Bifurcat Chaos 26:1650221

    Article  MathSciNet  MATH  Google Scholar 

  • Pham V-T, Volos C, Jafari S, Kapitaniak T (2017) Coexistence of hidden chaotic attractors in a novel no-equilibrium system. Nonlinear Dyn 87:2001–2010

    Article  Google Scholar 

  • Povinelli RJ, Johnson MT, Lindgren AC, Roberts FM, Ye J (2006) Statistical models of reconstructed phase spaces for signal classification. IEEE Trans Signal Process 54:2178–2186

    Article  MATH  Google Scholar 

  • Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proce IEEE 77(2):257–286

    Article  Google Scholar 

  • Rahimi A, Bavafa F, Aghababaei S, Khooban MH, Naghavi SV (2016) The online parameter identification of chaotic behaviour in permanent magnet synchronous motor by self-adaptive learning bat-inspired algorithm. Int J Electric Power Energy Syst 78:285–291

    Article  Google Scholar 

  • Sharma P, Shrimali M, Prasad A, Kuznetsov N, Leonov G (2015) Control of multistability in hidden attractors. Eur Phys J Spec Top 224:1485–1491

    Article  Google Scholar 

  • Shekofteh Y, Almasganj F (2013) Feature extraction based on speech attractors in the reconstructed phase space for automatic speech recognition systems. ETRI J 35:100–108

    Article  Google Scholar 

  • Shekofteh Y, Almasganj F, Daliri A (2015a) MLP-based isolated phoneme classification using likelihood features extracted from reconstructed phase space. Eng Appl Artif Intell 44:1–9

    Article  Google Scholar 

  • Shekofteh Y, Jafari S, Sprott JC, Golpayegani SMRH, Almasganj F (2015b) A gaussian mixture model based cost function for parameter estimation of chaotic biological systems. Commun Nonlinear Sci Numer Simul 20:469–481

    Article  MathSciNet  Google Scholar 

  • Shekofteh Y, Almasganj F (2010) Using phase space based processing to extract proper features for ASR systems. In: 5th International symposium on telecommunications (IST), pp 596–599

  • Wang L (2009) 3-Scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system. Nonlinear dyn 56:453–462

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Zhou B, Zhou S (2016) An improved cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation. Comput Intell Neurosci. https://doi.org/10.1155/2016/2959370

    Google Scholar 

  • Wei Z, Zhang W, Yao M (2015) On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system. Nonlinear Dyn 82:1251–1258

    Article  MathSciNet  MATH  Google Scholar 

  • Xu G, Shekofteh Y, Akgul A, Li C, Panahi S (2018) A new chaotic system with a self-excited attractor: entropy measurement, signal encryption, and parameter estimation. Entropy 20:86

    Article  Google Scholar 

  • Yao X, Liu Y (1996) Fast evolutionary programming. Evol Program 3:451–460

    Google Scholar 

  • Young S (2009) The HTK book, version 3.4.1. http://htk.eng.cam.ac.uk

  • Zhang H, Li B, Zhang J, Qin Y, Feng X, Liu B (2016) Parameter estimation of nonlinear chaotic system by improved TLBO strategy. Soft Comput 20:4965–4980

    Article  Google Scholar 

  • Zucchini W, MacDonald IL, Langrock R (2016) Hidden Markov models for time series: an introduction using R. CRC press, Boca Raton

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grant from Shahid Beheshti University G.C. (Grant Number SAAD-600-1076). Sajad Jafari was supported by Iran National Science Foundation (No. 96000815).

Author information

Authors and Affiliations

Authors

Contributions

Yasser Shekofteh designed the study and contributed to the experiment and algorithm design. Yasser Shekofteh and Sajad Jafari wrote the paper. Sajad Jafari and Karthikeyan Rajagopal performed the chaotic analysis of the paper.

Corresponding author

Correspondence to Yasser Shekofteh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekofteh, Y., Jafari, S. & Rajagopal, K. Cost function based on hidden Markov models for parameter estimation of chaotic systems. Soft Comput 23, 4765–4776 (2019). https://doi.org/10.1007/s00500-018-3129-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3129-6

Keywords

Navigation