[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Applications of computational intelligence in vehicle traffic congestion problem: a survey

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Vehicle traffic congestion is an increasing concern in metropolitan areas, with negative health, environment and economical implications. In recent times, computational intelligence (CI), a set of nature-inspired computational approaches and algorithms, has been used in vehicle routing and congestion mitigation research (also referred to as CI-based vehicle traffic routing systems—VTRSs). In this paper, we conduct a critique of existing literature on CI-based VTRSs and discuss identified limitations, evaluation process of existing approaches and research trends. We also identify potential research opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ahn CW, Ramakrishna RS (2002) A genetic algorithm for shortest path routing problem and the sizing of populations. IEEE Trans Evolut Comput 6(6):566–579

    Article  Google Scholar 

  • Akay B, Karaboga D (2012) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci 192:120–142

    Article  Google Scholar 

  • Al-Mayouf YRB, Ismail M, Abdullah NF et al (2016) Efficient and stable routing algorithm based on user mobility and node density in urban vehicular network. PLoS ONE 11(11):e0165966

    Article  Google Scholar 

  • Alhalabi SM, Al-Qatawneh SM, Samawi VW (2008) Developing a route navigation system using genetic algorithm. In: 3rd international conference on information and communication technologies: from theory to applications, 2008. ICTTA 2008. IEEE, pp 1–6

  • Aloqaily M, Kantarci B, Mouftah HT (2014) On the impact of quality of experience (QoE) in a vehicular cloud with various providers. In: 2014 11th annual high capacity optical networks and emerging/enabling technologies (Photonics for Energy). IEEE, pp 94–98

  • Aloqaily M, Kantarci B, Mouftah HT (2015) An auction-driven multi-objective provisioning frame-work in a vehicular cloud. In: 2015 IEEE Globecom Workshops (GC Wkshps). IEEE, pp 1–6

  • André M, Hammarström U (2000) Driving speeds in europe for pollutant emissions estimation. Transp Res Part D Transp Environ 5(5):321–335

    Article  Google Scholar 

  • Azar AT, Vaidyanathan S (2015) Computational intelligence applications in modeling and control. Springer, Berlin

    Book  Google Scholar 

  • Blum C, Dorigo M (2004) The hyper-cube framework for ant colony optimization. IEEE Trans Syst Man Cybern Part B Cybern 34(2):1161–1172

    Article  Google Scholar 

  • Brewerton PM, Millward LJ (2001) Organizational research methods: a guide for students and researchers. Sage, Thousand Oaks

    Book  Google Scholar 

  • Cagara D, Bazzan AL, Scheuermann B (2014) Getting you faster to work: a genetic algorithm approach to the traffic assignment problem. In: Proceedings of the 2014 conference companion on genetic and evolutionary computation companion. ACM, pp 105–106

  • Cantu-Paz E (2000) Efficient and accurate parallel genetic algorithms, vol 1. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Chakraborty B (2004) Ga-based multiple route selection for car navigation. In: Applied computing. Springer, Berlin, pp 76–83

  • Chakraborty B (2005) Simultaneous multiobjective multiple route selection using genetic algorithm for car navigation. In: Pattern recognition and machine intelligence. Springer, Berlin, pp 696–701

  • Chakraborty B, Chen RC (2009) Fuzzy-genetic approach for incorporation of driver’s requirement for route selection in a car navigation system. In: IEEE international conference on fuzzy systems, 2009. FUZZ-IEEE 2009. IEEE, pp 1645–1649

  • Chakraborty B, Maeda T, Chakraborty G (2005) Multiobjective route selection for car navigation system using genetic algorithm. In: Proceedings of the 2005 IEEE mid-summer workshop on soft computing in industrial applications, 2005. SMCia/05. IEEE, pp 190–195

  • Chan KY, Dillon TS, Chang E-J (2013) An intelligent particle swarm optimization for short-term traffic flow forecasting using on-road sensor systems. IEEE Trans Ind Electron 60(10):4714–4725

    Article  Google Scholar 

  • Choo K-KR, Fei Y, Xiang Y, Yu, Y (2017) Embedded device forensics and security. ACM Trans Embed Comput Syst 16(2):50

  • Claes R, Holvoet T (2011) Ant colony optimization applied to route planning using link travel time predictions. In: 2011 IEEE international symposium on parallel and distributed processing workshops and Phd Forum (IPDPSW). IEEE, pp 358–365

  • Cong Z, De Schutter B, Babuška R (2013) Ant colony routing algorithm for freeway networks. Transp Res Part C Emerg Technol 37:1–19

    Article  Google Scholar 

  • Cordeschi N, Amendola D, Shojafar M, Baccarelli E (2014) Performance evaluation of primary-secondary reliable resource-management in vehicular networks. In: 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC). IEEE, pp 959–964

  • Cordeschi N, Amendola D, Shojafar M, Baccarelli E (2015a) Distributed and adaptive resource management in cloud-assisted cognitive radio vehicular networks with hard reliability guarantees. Veh Commun 2(1):1–12

    Article  Google Scholar 

  • Cordeschi N, Amendola D, Shojafar M et al (2015b) Memory and memoryless optimal time-window controllers for secondary users in vehicular networks. In: Proceedings of the international symposium on performance evaluation of computer and telecommunication systems. Society for Computer Simulation International, pp 1–7

  • Couceiro M, Ghamisi P (2016) Particle swarm optimization. In: Fractional order darwinian particle swarm optimization. Springer, Berlin, pp 1–10

  • Danquah WM, Altilar DT (2015) Vcloud: a security framework for vanet. In: Mobile and wireless technology 2015, vol 310. Springer, Berlin, pp 1–13

  • Davies C, Lingras P (2003) Genetic algorithms for rerouting shortest paths in dynamic and stochastic networks. Eur J Oper Res 144(1):27–38

    Article  MathSciNet  MATH  Google Scholar 

  • Delavar M, Samadzadegan F, Pahlavani P (2004) A gis assisted optimal urban route finding approach based on genetic algorithms. Int Arch Photogramm Remote Sens Spat Inf Sci 35(2):305–308

    Google Scholar 

  • Deng Y, Tong H, Zhang X (2010) Dynamic shortest path in stochastic traffic networks based on fluid neural network and particle swarm optimization. In: 2010 sixth international conference on natural computation (ICNC), vol 5. IEEE, pp 2325–2329

  • Dezani H, Bassi RD, Marranghello N et al (2014) Optimizing urban traffic flow using genetic algorithm with petri net analysis as fitness function. Neurocomputing 124:162–167

    Article  Google Scholar 

  • Dimitrakopoulos G, Demestichas P (2010) Intelligent transportation systems. IEEE Veh Technol Mag 5(1):77–84

    Article  Google Scholar 

  • Dincer I, Colpan CO, Kadioglu F (2013) Causes, impacts and solutions to global warming. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Doolan R, Muntean G-M (2014) Time-ants: an innovative temporal and spatial ant-based vehicular routing mechanism. In: Intelligent vehicles symposium proceedings, 2014 IEEE. IEEE, pp 951–956

  • Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Italy

  • Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evolut Comput 1(1):53–66

    Article  Google Scholar 

  • Dorigo M, Gambardella L (2014) Ant-q: a reinforcement learning approach to the traveling salesman problem. In: Proceedings of ML-95, twelfth intern. conf. on machine learning, pp 252–260

  • Dorigo M, Stützle T (2010) Ant colony optimization: overview and recent advances. In: Handbook of metaheuristics. Springer, Berlin, pp 227–263

  • Duan H, Li P (2014) Bio-inspired computation in unmanned aerial vehicles. Springer, Berlin

    Book  Google Scholar 

  • En D, Wei H, Yang J et al (2012) Analysis of the shortest path of GPS vehicle navigation system based on genetic algorithm. In: Electrical, information engineering and mechatronics 2011. Springer, Berlin, pp 413–418

  • Engelbrecht AP (2007) Computational intelligence: an introduction. Wiley, New York

    Book  Google Scholar 

  • Ericsson E, Larsson H, Brundell-Freij K (2006) Optimizing route choice for lowest fuel consumption-potential effects of a new driver support tool. Transp Res Part C Emerg Technol 14(6):369–383

    Article  Google Scholar 

  • Gen M, Cheng R, Wang D (1997) Genetic algorithms for solving shortest path problems. In: IEEE international conference on evolutionary computation, 1997. IEEE, pp 401–406

  • Ghazy AM, Hefny HA (2014) Improving the performance of tantnet-2 using scout behavior. In: Advanced machine learning technologies and applications. Springer, Berlin, pp 424–435

  • Ghazy AMM (2011) Enhancement of dynamic routing using ant based control algorithm. Master’s Thesis, Institute of Statistical Studies and Research - Department of Computer and Information Science, Cairo University

  • Ghosal P, Chakraborty A, Banerjee S (2013) Honey bee based vehicular traffic optimization and management. In: Proceedings of seventh international conference on bio-inspired computing: theories and applications (BIC-TA 2012). Springer, Berlin, pp 455–463

  • Goldberg DE et al (1989) Genetic algorithms in search optimization and machine learning, vol 412. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Hawkins TR, Gausen OM, Strømman AH (2012) Environmental impacts of hybrid and electric vehicles—a review. Int J Life Cycle Assess 17(8):997–1014

    Article  Google Scholar 

  • He W, Li D, Zhang T et al (2012) Mining regular routes from gps data for ridesharing recommendations. In: Proceedings of the ACM SIGKDD international workshop on urban computing. ACM, pp 79–86

  • Hu J, Gao P, Yao Y, Xie X (2014) Traffic flow forecasting with particle swarm optimization and support vector regression. In: 2014 IEEE 17th international conference on intelligent transportation systems (ITSC). IEEE, pp 2267–2268

  • Hu L, Gu Z, Huang J et al (2008) Research and realization of optimum route planning in vehicle navigation systems based on a hybrid genetic algorithm. Proc Inst Mech Eng Part D J Automob Eng 222(5):757–763

    Article  Google Scholar 

  • Inagaki J, Haseyama M, Kitajima H (1999) A genetic algorithm for determining multiple routes and its applications. In: Proceedings of the 1999 IEEE international symposium on circuits and systems, 1999, vol 6. IS- CAS’99. IEEE, pp 137–140

  • Jabbarpour MR, Jalooli A, Shaghaghi E et al (2014a) Ant-based vehicle congestion avoidance system using vehicular networks. Eng Appl Artif Intell 36:303–319

    Article  Google Scholar 

  • Jabbarpour MR, Malakooti H, Noor RM et al (2014b) Ant colony optimisation for vehicle traffic systems: applications and challenges. Int J Bio-Inspired Comput 6(1):32–56

    Article  Google Scholar 

  • Jabbarpour MR, Noor RM, Khokhar RH (2015) Green vehicle traffic routing system using ant-based algorithm. J Netw Comput Appl 58:294–308

    Article  Google Scholar 

  • Jenner B, Flick U, von Kardoff E, Steinke I (2004) A companion to qualitative research. Sage, Thousand Oaks

    Google Scholar 

  • Jin Y (2005) A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput 9(1):3–12

    Article  Google Scholar 

  • Kammoun HM, Kallel I, Casillas J et al (2014) Adapt-traf: an adaptive multiagent road traffic management system based on hybrid ant-hierarchical fuzzy model. Transp Res Part C Emerg Technol 42:147–167

    Article  Google Scholar 

  • Kanoh H (2007) Dynamic route planning for car navigation systems using virus genetic algorithms. Int J Knowl Based Intell Eng Syst 11(1):65–78

    Article  Google Scholar 

  • Kanoh H, Nakamura T (2000) Knowledge based genetic algorithm for dynamic route selection. In: Fourth international conference on knowledge-based intelligent engineering systems and allied technologies, vol 2. Proceedings. IEEE, pp 616–619

  • Kanoh H, Hara K (2008) Hybrid genetic algorithm for dynamic multi-objective route planning with predicted traffic in a real-world road network. In: Proceedings of the 10th annual conference on genetic and evolutionary computation. ACM, pp 657–664

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Basturk B (2008) On the performance of artificial bee colony (abc) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  • Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  • Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (abc) algorithm and applications. Artif Intell Rev 42(1):21–57

    Article  Google Scholar 

  • Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, Berlin, pp 760–766

  • Kim B-K, Jo J-B, Kim J-R, Gen M (2009) Optimal route search in car navigation systems by multiobjective genetic algorithms. Int J Inf Syst Logist Manag 4(2):9–18

    Google Scholar 

  • Kponyo J, Kung Y, Zhang E (2014) Dynamic travel path optimization system using ant colony optimization. In: 2014 UKSim-AMSS 16th international conference on computer modelling and simulation (UKSim). IEEE, pp 142–147

  • Kponyo J, Kuang Y, Opare K et al (2015) An ant colony optimization solution to the optimum travel path determination problem in vanets: a netlogo modelling approach. In: The fifth international conference on advanced communications and computation (INFOCOMP 2015). IARIA

  • Krishnanand K, Nayak SK, Panigrahi BK, Rout P (2009) Comparative study of five bio-inspired evolutionary optimization techniques. In: World Congress on nature & biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 1231–1236

  • Lalwani S, Singhal S, Kumar R, Gupta N (2013) A comprehensive survey: applications of multi-objective particle swarm optimization (mopso) algorithm. Trans Comb 2(1):39–101

    MathSciNet  MATH  Google Scholar 

  • LaValle SM (2006) Planning algorithms. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lee J, Yang J (2014) A fast and scalable re-routing algorithm based on shortest path and genetic algorithms J. Lee, J. Yang Jungkyu Lee. Int J Comput Commun Control 7(3):482–493

    Article  Google Scholar 

  • Leung Y, Li G, Xu Z-B (1998) A genetic algorithm for the multiple destination routing problems. IEEE Trans Evolut Comput 2(4):150–161

    Article  Google Scholar 

  • Li D-F (2010) Topsis-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets. IEEE Trans Fuzzy Syst 18(2):299–311

    Google Scholar 

  • Man K-F, TANG KS, Kwong S (2012) Genetic algorithms: concepts and designs. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Maniezzo V, Carbonaro A (2000) An ants heuristic for the frequency assignment problem. Future Gener Comput Syst 16(8):927–935

    Article  Google Scholar 

  • Meng Z, Pan J-S, Alelaiwi A (2015) A new metaheuristic ebb-tide-fish-inspired algorithm for traffic navigation. Telecommun Syst 26(2): 403–415

  • Mohemmed AW, Sahoo NC, Geok TK (2008) Solving shortest path problem using particle swarm optimization. Appl Soft Comput 8(4):1643–1653

    Article  Google Scholar 

  • Nanayakkara SC, Srinivasan D, Lup LW et al (2007) Genetic algorithm based route planner for large urban street networks. In: IEEE Congress on evolutionary computation, 2007. CEC 2007. IEEE, pp 4469–4474

  • Naranjo PGV, Shojafar M, Mostafaei H et al (2016) P-SEP: a prolong stable election routing algorithm for energy-limited heterogeneous fog-supported wireless sensor networks. J Supercomput 1–23. doi:10.1007/s11227-016-1785-9

  • Narayanam R, Narahari Y (2011) A shapley value-based approach to discover influential nodes in social networks. IEEE Trans Autom Sci Eng 8(1):130–147

    Article  Google Scholar 

  • Ng S, Cheung C, Leung S, Luk A (2003) Fast convergence for backpropagation network with magnified gradient function. In: Proceedings of the international joint conference on neural networks, vol 3. IEEE, pp 1903–1908

  • Panigrahi BK, Shi Y, Lim M-H (2011) Handbook of swarm intelligence: concepts, principles and applications, vol 8. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  • Peng B (2011) Combined prediction for traffic flow based on particle swarm optimization. J Chongqing Technol Bus Univ (Natural Science Edition) 1:015

    Google Scholar 

  • Pham D, Ghanbarzadeh A, Koc E et al (2011) The bees algorithm—a novel tool for complex optimisation. In: Intelligent production machines and systems-2nd I* PROMS virtual international conference 3–14 July 2006. Elsevier, Amsterdam, p 454

  • Poli R (2007) An analysis of publications on particle swarm optimization applications. Department of Computer Science, University of Essex, Essex, UK

  • Pooranian Z, Barati A, Movaghar A (2011) Queen-bee algorithm for energy efficient clusters in wireless sensor networks. World Acad Sci Eng Technol 73:1080–1083

    Google Scholar 

  • Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Qun C (2009) Dynamic route guidance method based on particle swarm optimization algorithm. In: Second international conference on intelligent computation technology and automation, vol 1. ICICTA’09. IEEE, pp 267–270

  • Qureshi MA, Noor RM, Shamim A et al (2016) A lightweight radio propagation model for vehicular communication in road tunnels. PLoS ONE 11(3):e0152727

    Article  Google Scholar 

  • Rajasekhar A, Abraham A, Pant M (2011) Levy mutated artificial bee colony algorithm for global optimization. In: 2011 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 655–662

  • Salvi B, Subramanian K, Panwar N (2013) Alternative fuels for transportation vehicles: a technical review. Renew Sustain Energy Rev 25:404–419

    Article  Google Scholar 

  • Sastry K, Pelikan M, Goldberg DE (2004) Efficiency enhancement of genetic algorithms via building-block-wise fitness estimation. In: Congress on evolutionary computation, vol 1. CEC2004. IEEE, pp 720–727

  • Sattari MRJ, Malakooti H, Jalooli A, Noor RM (2014) A dynamic vehicular traffic control using ant colony and traffic light optimization. In: Advances in systems science. Springer, Berlin, pp 57–66

  • Schäfer R-P, Thiessenhusen K-U, Wagner P (2002) A traffic information system by means of realtime floating-car data. In: ITS world congress, vol 11, p 14

  • Schmitt EJ, Jula H (2006) Vehicle route guidance systems: classification and comparison. In: Intelligent transportation systems conference, 2006. ITSC’06. IEEE, pp 242–247

  • Seeley TD (2009) The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press, Harvard

    Google Scholar 

  • Senge S, Wedde HF (2012a) 2-Way evaluation of the distributed BeeJamA vehicle routing approach. In: Intelligent vehicles symposium (IV), 2012. IEEE, pp 205–210

  • Senge S, Wedde HF (2012b) Bee-inpired road traffic control as an example of swarm intelligence in cyber-physical systems. In: 2012 38th EU- ROMICRO conference on software engineering and advanced applications (SEAA). IEEE, pp 258–265

  • Senge S, Wedde HF (2012c) Minimizing vehicular travel times using the multi-agent system beejama. In: Product-focused software process improvement. Springer, Berlin, pp 335–349

  • Shojafar M, Cordeschi N, Baccarelli E (2016) Energy-efficient adaptive resource management for real-time vehicular cloud services. doi:10.1109/TCC.2016.2551747

  • Song J, Yang F, Choo K-KR et al (2017) SIPF: a secure installment payment framework for drive-thru internet. ACM Trans Embed Comput Syst 16(2):52

  • Sur C, Shukla A (2014a) Discrete krill herd algorithm—a bio-inspired meta-heuristics for graph based network route optimization. In: Distributed computing and internet technology. Springer, Berlin, pp 152–163

  • Sur C, Shukla A (2014b) Road traffic management using egyptian vulture optimization algorithm: a new graph agent-based optimization meta-heuristic algorithm. In: Networks and communications (net- com2013). Springer, Berlin, pp 107–122

  • Szeto W (2014) Dynamic modeling for intelligent transportation system applications. J Intell Transp Syst 18(4):323–326

    Article  Google Scholar 

  • Taniguchi E, Shimamoto H (2004) Intelligent transportation system based dynamic vehicle routing and scheduling with variable travel times. Transp Res Part C Emerg Technol 12(3):235–250

    Article  Google Scholar 

  • Teodorović D, DellOrco M (2008) Mitigating traffic congestion: solving the ridematching problem by bee colony optimization. Transp Plan Technol 31(2):135–152

    Article  Google Scholar 

  • Teodorovic D, Edara P, Via CE (2005) Highway space inventory control system. In: Transportation and traffic theory. Flow, dynamics and human interaction. 16th international symposium on transportation and traffic theory

  • Wang Z, Li J, Fang M, Li Y (2015) A multimetric ant colony optimization algorithm for dynamic path planning in vehicular networks. Int J Distrib Sens Netw 11(10). doi:10.1155/2015/271067

  • Wedde H, Senge S, Lehnhoff S et al (2010) Bee inspired online vehicle routing in large traffic systems. In: Proceedings of the second international conference on adaptive and self-adaptive systems and applications, IARIA, Lisbon, Portugal

  • Wedde HF, Senge S (2013) Beejama: a distributed, self-adaptive vehicle routing guidance approach. IEEE Trans Intell Transp Syst 14(4):1882–1895

    Article  Google Scholar 

  • Wedde HF, Farooq M, Zhang Y (2004) Beehive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Ant colony optimization and swarm intelligence. Springer, Berlin, pp 83–94

  • Wedde HF, Lehnhoff S, van Bonn B et al (2007) A novel class of multi-agent algorithms for highly dynamic transport planning inspired by honey bee behavior. In: IEEE conference on emerging technologies and factory automation, 2007. ETFA. IEEE, pp 1157–1164

  • Wen F, Gen M (2008) A genetic-based clustering approach to traffic network design for car navigation system. In: IEEE international conference on systems, man and cybernetics, 2008. SMC 2008. IEEE, pp 1688–1693

  • Wen F, Lin C (2010) Multiobjective route selection model and its soving method based on genetic algorithm. Int J Inf Syst Logist Manag 5(2):1–8

    Google Scholar 

  • Wen F, Gen M, Yu X (2011) A new multiobjective genetic algorithm for route selection. \(C ()\), 131(3):619–625

  • Wu L, Yang L, Liu H, Zhang Y (2014) Bee inspired zonal vehicle routing algorithm in urban traffic. TELKOMNIKA Indones J Electr Eng 12(9):6699–6710

    Google Scholar 

  • Wu XJ, Hao D, Xu C (2012) An improved method of artificial bee colony algorithm. In: Applied mechanics and materials, vol 101. Trans Tech Publ, pp 315–319

  • Xu Q-Z, Ke X-Z (2008) Genetic algorithm analysis for shortest path. Comput Eng Des 6:1507–1509

    Google Scholar 

  • Yang L, Lin J, Wang D, Jia L (2007) Dynamic route guidance algorithm based on artificial immune system. J Control Theory Appl 5(4):385–390

    Article  MathSciNet  Google Scholar 

  • Yang X-S (2005) Engineering optimizations via nature-inspired virtual bee algorithms. In: Artificial intelligence and knowledge engineering applications: a bioinspired approach. Springer, Berlin, pp 317–323

  • Yang X-S, Deb S, Fong S (2011) Accelerated particle swarm optimization and support vector machine for business optimization and applications. In: Networked digital technologies. Springer, Berlin, pp 53–66

  • Yu H, Lu F (2012) A multi-modal route planning approach with an improved genetic algorithm. Adv Geo-Spat Inf Sci 38:193–202

    Google Scholar 

  • Zhang Y, Jun Y, Wei G, Wu L (2010) Find multi-objective paths in stochastic networks via chaotic immune pso. Expert Syst Appl 37(3):1911–1919

    Article  Google Scholar 

  • Zhao D, Dai Y, Zhang Z (2012) Computational intelligence in urban traffic signal control: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 42(4):485–494

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim-Kwang Raymond Choo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbarpour, M.R., Zarrabi, H., Khokhar, R.H. et al. Applications of computational intelligence in vehicle traffic congestion problem: a survey. Soft Comput 22, 2299–2320 (2018). https://doi.org/10.1007/s00500-017-2492-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2492-z

Keywords

Navigation