[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A novel fuzzy gaussian-based dissimilarity measure for discovering similarity temporal association patterns

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Mining temporal association patterns from time-stamped temporal databases, first introduced in 2009, remain an active area of research. A pattern is temporally similar when it satisfies certain specified subset constraints. The naive and apriori algorithm designed for non-temporal databases cannot be extended to find similar temporal patterns in the context of temporal databases. The brute force approach requires performing \(2^{n }\) true support computations for ‘n’ items; hence, an NP-class problem. Also, the apriori or fp-tree-based algorithms designed for static databases are not directly extendable to temporal databases to retrieve temporal patterns similar to a reference prevalence of user interest. This is because the support of patterns violates the monotonicity property in temporal databases. In our case, support is a vector of values and not a single value. In this paper, we present a novel approach to retrieve temporal association patterns whose prevalence values are similar to those of the user specified reference. This allows us to significantly reduce support computations by defining novel expressions to estimate support bounds. The proposed approach eliminates computational overhead in finding similar temporal patterns. We then introduce a novel dissimilarity measure, which is the fuzzy Gaussian-based dissimilarity measure. The measure also holds the monotonicity property. Our evaluations demonstrate that the proposed method outperforms brute force and sequential approaches. We also compare the performance of the proposed approach with the SPAMINE which uses the Euclidean measure. The proposed approach uses monotonicity property to prune temporal patterns without computing unnecessary true supports and distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Borgelt C (2013) Soft pattern mining in neuroscience. In: Synergies of soft computing and statistics for intelligent data analysis, vol. 190 of the series Advances in Intelligent Systems and Computing, pp 3–10

  • Chen C-H, Li A-F, Lee Y-C (2014) Actionable high-coherent-utility fuzzy itemset mining. Soft Comput 18(12):2413–2424

    Article  Google Scholar 

  • Chen YC, Peng WC, Lee SY (2015) Mining temporal patterns in time interval-based data. IEEE Trans Knowl Data Eng 27(12):3318–3331

    Article  Google Scholar 

  • Chen C-H, Lan G-C, Hong T-P, Lin S-B (2016) Mining fuzzy temporal association rules by item lifespans. Appl Soft Comput 41:265–274

    Article  Google Scholar 

  • Hirano S, Tsumoto S (2002) Mining similar temporal patterns in long time-series data and its application to medicine. In: Proceedings of 2002 IEEE international conference on data mining, pp 219-216

  • Hong T-P, Lin K-Y, Wang S-L (2002) Mining linguistic browsing patterns in the world wide web. Soft Comput 6(5):329–336

    Article  MATH  Google Scholar 

  • Hu Y-H, Tsai C-F, Tai C-T, Chiang I-C (2015) A novel approach for mining cyclically repeated patterns with multiple minimum supports. Appl Soft Comput 28:90–99 ISSN 1568-4946

    Article  Google Scholar 

  • IBM IIS Internet page. http://www.almaden.ibm.com/software/quest/resources/

  • Jin L, Lee Y, Seo S, Ryu KH (2006) Discovery of temporal frequent patterns using TFP-Tree. In: Management, vol 4016 of Lecture Notes in computer science, pp 349–361

  • Kudłacik P, Porwik P, Wesołowski T (2016) Fuzzy approach for intrusion detection based on user’s commands. Soft Comput 20(7):2705–2719

    Article  Google Scholar 

  • Lin YS, Jiang JY, Lee SJ (2014) A similarity measure for text classification and clustering. IEEE Trans Knowl Data Eng 26(7):1575–1590

    Article  Google Scholar 

  • Mahmoud S, Lotfi A, Langensiepen C (2013) Behavioural pattern identification and prediction in intelligent environments. Appl Soft Comput 13(4):1813–1822

    Article  Google Scholar 

  • McClean SI, Scotney BW, Palmer FL (2013) Learning temporal concepts from heterogeneous data sequences. Soft Comput 8(2):109–117

    Article  MATH  Google Scholar 

  • Peng J, Choo K-KR, Ashman H (2016) Bit-level N-Gram based forensic authorship analysis on social media: identifying individuals from linguistic profiles. J Netw Comput Appl 70:171–182

    Article  Google Scholar 

  • Peng J, Choo K-KR, Ashman H (2016) Astroturfing detection in social media: using binary n-gram analysis for authorship attribution. In: Proceedings of 15th IEEE international conference on trust, security and privacy in computing and communications (TrustCom 2016), pp 121–128, 23–26 August 2016. IEEE Computer Society Press

  • Peng J, Detchon S, Choo K-KR, Ashman H, Astrofurfing detection in social media: a binary n-gram based approach. Concurr Comput Pract Exp (in press)

  • Radhakrishna V, Kumar PV, Janaki V (2015) A novel approach for mining similarity profiled temporal association patterns using Venn diagrams. In: Proceedings of the international conference on engineering & MIS 2015 (ICEMIS ’15). ACM, New York, NY, USA, Article 58. doi:10.1145/2832987.2833071

  • Radhakrishna V, Kumar PV, Janaki V (2015) A novel approach for mining similarity profiled temporal association patterns. Rev Tec Ing Univ Zulia 38(3):80–93

    Google Scholar 

  • Radhakrishna V, Kumar PV, Janaki V (2015) A novel approach to discover similar temporal association patterns in a single database scan. In: 2015 IEEE international conference on computational intelligence and computing research (ICCIC), Madurai, 2015, pp 1–8

  • Radhakrishna V, Kumar PV, Janaki V (2015) A survey on temporal databases and data mining. In: Proceedings of the international conference on engineering & MIS 2015 (ICEMIS ’15). ACM, New York, NY, USA, Article 52

  • Radhakrishna V, Kumar PV, Janaki V (2015) An approach for mining similarity profiled temporal association patterns using gaussian based dissimilarity measure. In: Proceedings of the international conference on engineering & MIS 2015 (ICEMIS ’15). ACM, New York, NY, USA, Article 57

  • Radhakrishna V, Kumar PV, Janaki V (2016) An approach for mining similar temporal association patterns in single database scan. In: Proceedings of first international conference on information and communication technology for intelligent systems, vol. 2, Published in Smart Innovation, Systems and Technologies 51:607–617

  • Sangaiah AK, Thangavelu AK, Gao XZ, Anbazhagan N, Durai MS (2015) An ANFIS approach for evaluation of team-level service climate in GSD projects using Taguchi-genetic learning algorithm. Appl Soft Comput 30:628–635

  • Sangaiah AK, Gao XZ, Ramachandran M, Zheng X (2015) A fuzzy DEMATEL approach based on intuitionistic fuzzy information for evaluating knowledge transfer effectiveness in GSD projects. Int J Innov Comput Appl 6(3–4):203–215

    Article  Google Scholar 

  • Sangaiah AK, Thangavelu AK (2014) An adaptive neuro-fuzzy approach to evaluation of team- level service climate in GSD projects. Neural Comput Appl 25(3–4):573–583

    Article  Google Scholar 

  • Sarhadi A, Burn DH, Johnson F, Mehrotra R, Sharma A (2016) Water resources climate change projections using supervised nonlinear and multivariate soft computing techniques. J Hydrol 536:119–132 ISSN 0022-1694

    Article  Google Scholar 

  • Schockaert S, De Cock M, Kerre EE (2010) Reasoning about fuzzy temporal information from the web: towards retrieval of historical events. Soft Comput 14(8):869–886

    Article  MATH  Google Scholar 

  • Schultz REO, Centeno TM, Selleron G, Delgado MR (2009) A soft computing-based approach to spatio-temporal prediction. Int J Approx Reason 50(1):3–20 ISSN 0888-613X

    Article  Google Scholar 

  • Tseng VS, Lin KW, Chang J-C (2008) Prediction of user navigation patterns by mining the temporal web usage evolution. Soft Comput 12(2):157–163

    Article  Google Scholar 

  • Wan Yuqing, Gong Xueyuan, Si Yain-Whar (2016) Effect of segmentation on financial time series pattern matching. Appl Soft Comput 38:346–359

    Article  Google Scholar 

  • Wang H, Feng L (2016) Metric learning with geometric mean for similarities measurement. Soft Comput 20(10):3969–3979

    Article  Google Scholar 

  • Wang M, Ma J (2016) A novel recommendation approach based on users’ weighted trust relations and the rating similarities. Soft Comput 20(10):3981–3990

    Article  Google Scholar 

  • Xu Z, Luo X, Liu Y, Choo K-KR, Sugumaran V, Yen N, Mei L, Hu C (2016) From latency, through outbreak, to decline: detecting different states of emergency events using web resources. IEEE Trans Big Data. doi:10.1109/TBDATA.2016.2599935

  • Xu Z, Xuan J, Liu Y, Choo K-KR, Mei L, Hu C (2016) Building spatial temporal relation graph of concepts pair using web repository. Inf Syst Front. doi:10.1007/s10796-016-9676-4

  • Yoo JS (2012) Temporal data mining: similarity-profiled association pattern. In: Data mining: foundations and intelligent paradigms, vol. 23 of intelligent systems reference library, pp 29–47

  • Yoo JS, Shekhar S (2008) Mining temporal association patterns under a similarity constraint. In: Scientific and statistical database management, vol. 5069 of the series Lecture Notes in computer science, pp 401–417

  • Yoo JS, Shekhar S (2009) Similarity-profiled temporal association mining. IEEE Trans Knowl Data Eng 21(8):1147–1161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim-Kwang Raymond Choo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishna, V., Aljawarneh, S.A., Kumar, P.V. et al. A novel fuzzy gaussian-based dissimilarity measure for discovering similarity temporal association patterns. Soft Comput 22, 1903–1919 (2018). https://doi.org/10.1007/s00500-016-2445-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2445-y

Keywords

Navigation