[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Enhancing social emotional optimization algorithm using local search

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Many problems in science and engineering can be converted into optimization problems. Social emotional optimization algorithm (SEOA) is a promising optimization technique, which has been successfully applied in various fields . However, it may suffer from slow convergence rate when tackling some complex optimization problems. In order to accelerate the convergence rate, an enhanced social emotional optimization algorithm using local search (ELSEOA) is proposed. In ELSEOA, it utilizes a local search strategy to accelerate the convergence rate. Moreover, ELSEOA conducts the Levy distribution-based emotional simulation strategy to better imitate the emotional changes in the human emotional system. The experimental results over 15 classical test functions show that ELSEOA can achieve better performance than the traditional SEOA and other optimization algorithms on the majority of the test functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optim 31(4):635–672

    Article  MATH  MathSciNet  Google Scholar 

  • Cai X, Liu D, Wang L, Kang Q, Wu Q (2013) Using social emotional optimization algorithm to solve toy model of protein folding. J Comput Theor Nanosci 10(6):1545–1549

    Article  Google Scholar 

  • Cai Y, Wang J, Chen Y, Wang T, Tian H, Luo W (2016) Adaptive direction information in differential evolution for numerical optimization. Soft Comput 20(2):465–494

    Article  Google Scholar 

  • Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux JL (2015) Color image analysis by quaternion-type moments. J Math Imaging Vis 51(1):124–144

    Article  MATH  MathSciNet  Google Scholar 

  • Cui Z, Cai X (2010) Using social cognitive optimization algorithm to solve nonlinear equations. In: 9th IEEE International Conference on Cognitive Informatics (ICCI), p 199–203

  • Cui Z, Cai X (2011) Optimal coverage configuration with social emotional optimisation algorithm in wireless sensor networks. Int J Wirel Mob Comput 5(1):43–47

    Article  Google Scholar 

  • Cui Z, Xu Y (2012) Social emotional optimisation algorithm with levy distribution. Int J Wirel Mob Comput 5(4):394–400

    Article  Google Scholar 

  • Cui Z, Shi Z , Zeng J (2010) Using social emotional optimization algorithm to direct orbits of chaotic systems. In: Swarm, Evolutionary, and Memetic Computing, p 389–395

  • Cui Z, Fan S, Shi Z (2013) Social emotional optimization algorithm with gaussian distribution for optimal coverage problem. Sens Lett 11(2):259–263

    Article  Google Scholar 

  • Gao W, Chan FTS, Huang L, Liu S (2015) Bare bones artificial bee colony algorithm with parameter adaptation and fitness-based neighborhood. Inf Sci 316:180–200

    Article  Google Scholar 

  • Gao X, Wang X, Ovaska SJ, Zenger K (2012) A hybrid optimization method of harmony search and opposition-based learning. Eng Optim 44(8):895–914

    Article  Google Scholar 

  • Guo Z, Huang H, Deng C, Yue X, Wu Z (2015a) An enhanced differential evolution with elite chaotic local search. Comput Intell Neurosci 11

  • Guo Z, Huang H, Yang H, Wang S, Wang H (2015b) An enhanced gravitational search algorithm for global optimisation. Int J Wirel Mob Comput 9(3):273–280

    Article  Google Scholar 

  • Guo Z, Yue X, Zhang K, Deng C, Liu S (2015c) Enhanced social emotional optimisation algorithm with generalised opposition-based learning. Int J Comput Sci Math 6(1):59–68

    Article  MathSciNet  Google Scholar 

  • Jia D, Zheng G, Khurram KM (2011) An effective memetic differential evolution algorithm based on chaotic local search. Inf Sci 181(15):3175–3187

    Article  Google Scholar 

  • Li X, Cui Z (2012) Using nw small-world model to improve the performance of social emotional optimization algorithm. In: Proceedings of 2012 International Conference on Modelling, Identification and Control (ICMIC), p 1123–1128

  • Li X, Cui Z, Shi Z (2012) Newman and Watts small world social emotional optimization algorithm with wsn. Sens Lett 10(8):1676–1681

    Article  Google Scholar 

  • Lim TY (2014) Structured population genetic algorithms: a literature survey. Artif Intell Rev 41(3):385–399

    Article  Google Scholar 

  • Liu G, Guo Z (2016) A clustering-based differential evolution with random-based sampling and gaussian sampling. Neurocomputing 205:229–246

    Article  Google Scholar 

  • Liu Y, Xu Z (2012) Time-varying social emotional optimisation algorithm. Int J Comput Sci Math 3(4):376–384

    Article  MATH  Google Scholar 

  • Ma T, Zhou J, Tang M, Tian Y, Al-Dhelaan A, Al-Rodhaan M, Lee S (2015) Social network and tag sources based augmenting collaborative recommender system. IEICE Trans Inf Syst 98(4):902–910

    Article  Google Scholar 

  • Niu J, Zhong W, Liang Y, Luo N, Qian F (2015) Fruit fly optimization algorithm based on differential evolution and its application on gasification process operation optimization. Knowl Based Syst 88:253–263

    Article  Google Scholar 

  • Park SY, Lee JJ (2014) An efficient differential evolution using speeded-up k-nearest neighbor estimator. Soft Comput 18(1):35–49

    Article  Google Scholar 

  • Peng H, Wu Z (2015) Heterozygous differential evolution with Taguchi local search. Soft Comput 19(11):3273–3291

    Article  Google Scholar 

  • Rahnamayan S, Tizhoosh HR, Salama M (2008) Opposition-based differential evolution. IEEE Trans Evolut Comput 12(1):64–79

    Article  Google Scholar 

  • Ram G, Mandal D, Kar R, Ghosal SP (2014) Social emotional optimization algorithm for beamforming of linear antenna arrays. In: TENCON 2014-2014 IEEE Region 10 Conference, p 1–5

  • Shang Y, Qiu Y (2006) A note on the extended Rosenbrock function. Evolut Comput 14(1):119–126

    Article  Google Scholar 

  • Shen J, Tan H, Wang J, Wang J, Lee S (2015) A novel routing protocol providing good transmission reliability in underwater sensor networks. J Internet Technol 16(1):171–178

    Google Scholar 

  • Sikdar UK, Ekbal A, Saha S, Uryupina O, Poesio M (2015) Differential evolution-based feature selection technique for anaphora resolution. Soft Comput 19(8):2149–2161

    Article  Google Scholar 

  • Upadhyay P, Kar R, Mandal D, Ghoshal SP (2014) A novel social emotional optimisation algorithm for iir system identification problem. Int J Model Identif Control 22(1):80–112

    Article  Google Scholar 

  • Wang H, Wu Z, Rahnamayan S, Li C, Zeng S, Jiang D (2011a) Particle swarm optimisation with simple and efficient neighbourhood search strategies. Int J Innov Comput Appl 3(2):97–104

    Article  Google Scholar 

  • Wang H, Wu Z, Rahnamayan S, Liu Y, Ventresca M (2011b) Enhancing particle swarm optimization using generalized opposition-based learning. Inf Sci 181(20):4699–4714

    Article  MathSciNet  Google Scholar 

  • Wang H, Wu Z, Rahnamayan S, Sun H, Liu Y, Pan J (2014) Multi-strategy ensemble artificial bee colony algorithm. Inf Sci 279:587–603

    Article  MATH  MathSciNet  Google Scholar 

  • Wang Y, Cai Z, Zhang Q (2011c) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evolut Comput 15(1):55–66

    Article  Google Scholar 

  • Wei Z, Cui Z, Zeng J (2012) Social emotional optimisation algorithm with emotional model. Int J Comput Sci Eng 7(2):125–132

  • Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295:395–406

    Article  Google Scholar 

  • Wu J, Cui Z, Liu J (2011) A hybrid social emotional optimization algorithm with metropolis rule. In: Proceedings of 2011 International Conference on Modelling, Identification and Control (ICMIC), p 363–370

  • Xia Z, Wang X, Sun X, Liu Q, Xiong N (2014a) Steganalysis of LSB matching using differences between nonadjacent pixels. Multimedia Tools and Applications, p 1–16

  • Xia Z, Wang X, Sun X, Wang B (2014b) Steganalysis of least significant bit matching using multi-order differences. Secur Commun Netw 7(8):1283–1291

    Article  Google Scholar 

  • Xie S, Wang Y (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wirel Personal Commun 78(1):231–246

    Article  Google Scholar 

  • Xu Q, Wang L, Wang N, Hei X, Zhao L (2014) A review of opposition-based learning from 2005 to 2012. Eng Appl Artif Intell 29:1–12

    Article  Google Scholar 

  • Xu Y, Cui Z, Zeng J (2010) Social emotional optimization algorithm for nonlinear constrained optimization problems. In: Swarm, Evolutionary, and Memetic Computing, p 583–590

  • Xue F, Cai Y, Chen Y, Cui Z (2015) Discrete social emotional optimization algorithm with lattice for Lennard-Jones clusters. J Comput Theor Nanosci 12(8):1963–1967

    Article  Google Scholar 

  • Yang C, Chen L, Cui Z (2012) Solving redundancy optimisation problem with social emotional optimisation algorithm. Int J Comput Appl Technol 43(4):320–326

    Article  Google Scholar 

  • Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3(2):82–102

    Article  Google Scholar 

  • Zhang Y, Zhang P (2015) Machine training and parameter settings with social emotional optimization algorithm for support vector machine. Pattern Recognit Lett 54:36–42

    Article  Google Scholar 

  • Zheng Y, Jeon B, Xu D, Wu QM, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy c-means algorithm. J Intell Fuzzy Syst 28(2):961–973

    Google Scholar 

  • Zou D, Gao L, Wu J, Li S (2010) Novel global harmony search algorithm for unconstrained problems. Neurocomputing 73(16):3308–3318

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (Nos. 41261093, 41561091, and 61462036), by Natural Science Foundation of Jiangxi, China (Nos. 20151BAB217010 and 20151BAB201015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolu Guo.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Yue, X., Yang, H. et al. Enhancing social emotional optimization algorithm using local search. Soft Comput 21, 7393–7404 (2017). https://doi.org/10.1007/s00500-016-2282-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2282-z

Keywords

Navigation