[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An agent-based algorithm exploiting multiple local dissimilarities for clusters mining and knowledge discovery

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

We propose a multi-agent algorithm able to automatically discover relevant regularities in a given dataset, determining at the same time the set of configurations of the adopted parametric dissimilarity measure that yield compact and separated clusters. Each agent operates independently by performing a Markovian random walk on a weighted graph representation of the input dataset. Such a weighted graph representation is induced by a specific parameter configuration of the dissimilarity measure adopted by an agent for the search. During its lifetime, each agent evaluates different parameter configurations and takes decisions autonomously for one cluster at a time. Results show that the algorithm is able to discover parameter configurations that yield a consistent and interpretable collection of clusters. Moreover, we demonstrate that our algorithm shows comparable performances with other similar state-of-the-art algorithms when facing specific clustering problems. Notably, we compare our method with respect to several graph-based clustering algorithms and a well-known subspace search method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aggarwal CC, Wolf JL, Yu PS, Procopiuc C, Park JS (1999) Fast algorithms for projected clustering. SIGMOD Rec 28(2):61–72. doi:10.1145/304181.304188

    Article  Google Scholar 

  • Agogino A, Tumer K (2006) Efficient agent-based cluster ensembles. In: Proceedings of the fifth international joint conference on autonomous agents and multiagent systems, ACM, pp 1079–1086

  • Alamgir M, von Luxburg U (2010) Multi-agent random walks for local clustering on graphs. In: Proceedings of the IEEE 10th international conference on data mining, pp 18–27. doi:10.1109/ICDM.2010.87

  • Andersen R, Chung F, Lang K (2006) Local graph partitioning using pagerank vectors. In: Proceedings of the 47th annual IEEE symposium on foundations of computer science. IEEE Computer Society, Washington, DC, USA, pp 475–486. doi:10.1109/FOCS.2006.44

  • Arora S, Rao S, Vazirani U (2008) Geometry, flows, and graph-partitioning algorithms. Commun ACM 51(10):96–105

    Article  Google Scholar 

  • Arora S, Rao S, Vazirani U (2009) Expander flows, geometric embeddings and graph partitioning. J ACM 56(2):5

    Article  MathSciNet  MATH  Google Scholar 

  • Azran A, Ghahramani Z (2006) Spectral methods for automatic multiscale data clustering. In: Proceedings of the 2006 IEEE computer society conference on computer vision and pattern recognition. IEEE Computer Society, Washington, DC, USA, pp 190–197. doi:10.1109/CVPR.2006.289

  • Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 18 Feb 2015

  • Bereta M, Pedrycz W, Reformat M (2013) Local descriptors and similarity measures for frontal face recognition: a comparative analysis. J Vis Commun Image Represent 24(8):1213–1231. doi:10.1016/j.jvcir.2013.08.004

    Article  Google Scholar 

  • Bianchi FM, Livi L, Rizzi A (2015) Two density-based k-means initialization algorithms for non-metric data clustering. Pattern Anal Appl. doi:10.1007/s10044-014-0440-4

    Google Scholar 

  • Bulò SR, Pelillo M (2013) A game-theoretic approach to hypergraph clustering. IEEE Trans Pattern Anal Mach Intell 35(6):1312–1327

    Article  Google Scholar 

  • Cao L (2009) Data mining and multi-agent integration. Springer, Berlin

    Book  MATH  Google Scholar 

  • Cao J, Wu Z, Wu J, Liu W (2013) Towards information-theoretic K-means clustering for image indexing. Signal Process 93(7):2026–2037. doi:10.1016/j.sigpro.2012.07.030

    Article  Google Scholar 

  • Chaimontree S, Atkinson K, Coenen F (2012) A framework for multi-agent based clustering. Auton Agents Multi-Agent Syst 25(3):425–446. doi:10.1007/s10458-011-9187-0

    Article  Google Scholar 

  • Chandrasekhar U, Naga P (2011) Recent trends in ant colony optimization and data clustering: a brief survey. In: 2nd international conference on intelligent agent and multi-agent systems (IAMA), pp 32–36. doi:10.1109/IAMA.2011.6048999

  • Chang CC (2012) A boosting approach for supervised mahalanobis distance metric learning. Pattern Recogn 45(2):844–862

    Article  MATH  Google Scholar 

  • Chung F (1994) Spectral graph theory. AMS, Providence

    Google Scholar 

  • De Smet F, Aeyels D (2009) Cluster transitions in a multi-agent clustering model. In: Proceedings of the 48th IEEE conference on decision and control, 2009 held jointly with the 2009 28th Chinese control conference. CDC/CCC 2009, pp 4778–4784. doi:10.1109/CDC.2009.5400314

  • Delvenne JC, Yaliraki SN, Barahona M (2010) Stability of graph communities across time scales. Proc Natl Acad Sci 107(29):12,755–12,760. doi:10.1073/pnas.0903215107

    Article  Google Scholar 

  • Ditterrich TG (1997) Machine learning research: four current direction. Artif Intell Magz 4:97–136

    Google Scholar 

  • Duin RPW, Pȩkalska E (2012) The dissimilarity space: bridging structural and statistical pattern recognition. Pattern Recogn Lett 33(7):826–832. doi:10.1016/j.patrec.2011.04.019

    Article  Google Scholar 

  • Ferrer M, Valveny E, Serratosa F, Bardají I, Bunke H (2009) Graph-based k-means clustering: a comparison of the set median versus the generalized median graph. In: Proceedings of the 13th international conference on computer analysis of images and patterns, CAIP ’09. Springer, Berlin, pp 342–350. doi:10.1007/978-3-642-03767-2_42

  • Forestier G, Gançarski P, Wemmert C (2010) Collaborative clustering with background knowledge. Data Knowl Eng 69(2):211–228

    Article  MATH  Google Scholar 

  • Gallesco C, Mueller S, Popov S (2011) A note on spider walks. ESAIM: Probab Stat 15:390–401

    Article  MathSciNet  MATH  Google Scholar 

  • Galluccio L, Michel O, Comon P, Hero AO III (2012) Graph based k-means clustering. Signal Process 92(9):1970–1984. doi:10.1016/j.sigpro.2011.12.009

    Article  Google Scholar 

  • Galluccio L, Michel O, Comon P, Kliger M, Hero AO III (2013) Clustering with a new distance measure based on a dual-rooted tree. Inf Sci 251:96–113. doi:10.1016/j.ins.2013.05.040

    Article  MathSciNet  Google Scholar 

  • Giannella C, Bhargava R, Kargupta H (2004) Multi-agent systems and distributed data mining. In: Cooperative information agents VIII. Springer, Berlin, pp 1–15

  • Gisbrecht A, Schleif FM (2015) Metric and non-metric proximity transformations at linear costs. Neurocomputing 167:643–657. doi:10.1016/j.neucom.2015.04.017

    Article  Google Scholar 

  • Gkantsidis C, Mihail M, Saberi A (2003) Conductance and congestion in power law graphs. ACM SIGMETRICS Perform Eval Rev ACM 31:148–159

    Article  Google Scholar 

  • Gönen M, Alpaydın E (2011) Multiple kernel learning algorithms. J Mach Learn Res 12:2211–2268

    MathSciNet  MATH  Google Scholar 

  • Gorodetsky V, Karsaeyv O, Samoilov V (2003) Multi-agent technology for distributed data mining and classification. In: Proceedings of the IEEE/WIC international conference on intelligent agent technology, IEEE, pp 438–441

  • Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques: concepts and techniques. Elsevier, New York

    MATH  Google Scholar 

  • Hoory S, Linial N, Wigderson A (2006) Expander graphs and their applications. Bull Am Math Soc 43(4):439–561

    Article  MathSciNet  MATH  Google Scholar 

  • Izakian H, Pedrycz W, Jamal I (2013) Clustering spatio-temporal data: an augmented fuzzy C-means. IEEE Trans Fuzzy Syst 21(5):855–868. doi:10.1109/TFUZZ.2012.2233479

    Article  Google Scholar 

  • Kannan R, Vempala S, Vetta A (2004) On clusterings: good, bad and spectral. J ACM 51(3):497–515

    Article  MathSciNet  MATH  Google Scholar 

  • Kim SW, Duin RPW (2009) A combine-correct-combine scheme for optimizing dissimilarity-based classifiers. In: Bayro-Corrochano E, Eklundh JO (eds) Progress in pattern recognition, image analysis, computer vision, and applications, LNCS, vol 5856. Springer, Berlin, pp 425–432. doi:10.1007/978-3-642-10268-4_49

  • Klusch M, Lodi S, Moro G (2003) Agent-based distributed data mining: the KDEC scheme. In: Klusch M, Bergamaschi S, Edwards P, Petta P (eds) Intelligent information agents, vol 2586. Springer, Berlin, pp 104–122. doi:10.1007/3-540-36561-3_5

  • Komorowski J, Zytkow J (1997) Principles of data mining and knowledge discovery. Springer, Berlin

    Book  Google Scholar 

  • Kriegel HP, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 3(1):1:1–1:58. doi:10.1145/1497577.1497578

    Article  Google Scholar 

  • Leighton T, Rao S (1999) Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J ACM 46:787–832. doi:10.1145/331524.331526

    Article  MathSciNet  MATH  Google Scholar 

  • Livi L, Rizzi A, Sadeghian A (2014) Optimized dissimilarity space embedding for labeled graphs. Inf Sci 266:47–64. doi:10.1016/j.ins.2014.01.005

    Article  MathSciNet  Google Scholar 

  • Livi L, Rizzi A, Sadeghian A (2015) Granular modeling and computing approaches for intelligent analysis of non-geometric data. Appl Soft Comput 27:567–574. doi:10.1016/j.asoc.2014.08.072

    Article  Google Scholar 

  • Lovász L (1996) Random walks on graphs: a survey. In: Miklós D, Sós VT, Szőnyi T (eds) Combinatorics, Paul Erdős is eighty, vol 2. János Bolyai Mathematical Society, Budapest, pp 353–398

  • Madry A (2010) Fast approximation algorithms for cut-based problems in undirected graphs. In: Proceedings of the 51st annual IEEE symposium on foundations of computer science, pp 245–254. doi:10.1109/FOCS.2010.30

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092. doi:10.1063/1.1699114

    Article  Google Scholar 

  • Mitra S, Banka H, Pedrycz W (2006) Rough-fuzzy collaborative clustering. IEEE Trans Syst Man Cybern Part B: Cybern 36(4):795–805

    Article  Google Scholar 

  • Mu Y, Ding W, Tao D (2013) Local discriminative distance metrics ensemble learning. Pattern Recogn 46(8):2337–2349. doi:10.1016/j.patcog.2013.01.010

    Article  MATH  Google Scholar 

  • Negenborn RR, Hug-Glanzmann G, De Schutter B, Andersson G (2010) A novel coordination strategy for multi-agent control using overlapping subnetworks with application to power systems. In: Mohammadpour J, Grigoriadis KM (eds) Efficient modeling and control of large-scale systems. Springer, Norwell, pp 251–278

  • Nguyen TM, Wu QMJ (2013) Dynamic fuzzy clustering and its application in motion segmentation. IEEE Trans Fuzzy Syst 21(6):1019–1031. doi:10.1109/TFUZZ.2013.2240689

    Article  Google Scholar 

  • North MJ (2014) A theoretical formalism for analyzing agent-based models. Complex Adapt Syst Model 2(1):3

    Article  Google Scholar 

  • Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. ACM SIGKDD Explor Newslett 6(1):90–105

    Article  Google Scholar 

  • Pedrycz W (2002) Collaborative fuzzy clustering. Pattern Recogn Lett 23(14):1675–1686

    Article  MATH  Google Scholar 

  • Pedrycz W (2005) Knowledge-based clustering: from data to information granules. Wiley, New York

    Book  MATH  Google Scholar 

  • Pedrycz W (2013) Proximity-based clustering: a search for structural consistency in data with semantic blocks of features. IEEE Trans Fuzzy Syst 21(5):978–982. doi:10.1109/TFUZZ.2012.2236842

    Article  Google Scholar 

  • Prodromidis A, Chan P, Stolfo S (2000) Meta-learning in distributed data mining systems: issues and approaches. Adv Distrib Parallel Knowl Discov 3:81–114

    Google Scholar 

  • Provost FJ, Hennessy DN (1996) Scaling up: distributed machine learning with cooperation. In: Proceedings of the thirteenth national conference on artificial intelligence, vol 1, pp 74–79

  • Queiroz S, de Carvalho FDAT, Lechevallier Y (2013) Nonlinear multicriteria clustering based on multiple dissimilarity matrices. Pattern Recogn 46(12):3383–3394. doi:10.1016/j.patcog.2013.06.008

    Article  MATH  Google Scholar 

  • Sarma AD, Gollapudi S, Panigrahy R (2011) Estimating pagerank on graph streams. J ACM 58(3):13

    Article  MathSciNet  MATH  Google Scholar 

  • Shen C, Kim J, Liu F, Wang L, van den Hengel A (2014) Efficient dual approach to distance metric learning. IEEE Trans Neural Netw Learn Syst 25(2):394–406. doi:10.1109/TNNLS.2013.2275170

    Article  Google Scholar 

  • Spielman DA, Teng SH (2013) A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning. SIAM J Comput 42(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Tabrizi SA, Shakery A, Asadpour M, Abbasi M, Tavallaie MA (2013) Personalized pagerank clustering: a graph clustering algorithm based on random walks. Phys A: Stat Mech Appl 392(22):5772–5785. doi:10.1016/j.physa.2013.07.021

    Article  MathSciNet  Google Scholar 

  • Trefethen LN, Bau D III (1997) Numerical linear algebra, vol 50. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Vidal R (2010) A tutorial on subspace clustering. IEEE Signal Process Maga 28(2):52–68

    Article  Google Scholar 

  • Yang L, Jin R, Mummert L, Sukthankar R, Goode A, Zheng B, Hoi SCH, Satyanarayanan M (2010) A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval. IEEE Trans Pattern Anal Mach Intell 32(1):30–44. doi:10.1109/TPAMI.2008.273

  • Yin X, Shu T, Huang Q (2012) Semi-supervised fuzzy clustering with metric learning and entropy regularization. Knowl-Based Syst 35:304–311

    Article  Google Scholar 

  • Zhang H, Yu J, Wang M, Liu Y (2012) Semi-supervised distance metric learning based on local linear regression for data clustering. Neurocomputing 93:100–105

  • Zhang L, Pedrycz W, Lu W, Liu X, Zhang L (2014) An interval weighed fuzzy c-means clustering by genetically guided alternating optimization. Expert Syst Appl 41(13):5960–5971

    Article  Google Scholar 

Download references

Acknowledgments

The work presented in this paper has been partially funded by Telecom Italia S.p.a. The authors wish to thank Corrado Moiso, Software System Architect at Telecom Italia—Future Centre, for the benefits that he provided to the present project through the valuable comments, ideas and assistance to the writing and the undertaking of the research summarized here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Maria Bianchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Appendix: Graph conductance and related approximation

Appendix: Graph conductance and related approximation

Given a graph \(G=(\mathcal {V}, \mathcal {E})\), with \(n=|\mathcal {V}|\), the conductance of a cut induced by the subset \(\mathcal {S}\subset \mathcal {V}\) is defined as:

$$\begin{aligned} \phi (S) = \frac{\sum _{u \in S} \sum _{v \in \overline{S}} A(u, v)}{\min (A(S), A(\overline{S}))}, \end{aligned}$$
(9)

where \(\overline{S}=\mathcal {V}{\setminus }\mathcal {S}\) and \(A(S) = \sum _{u,v \in S} A(u, v)\) are the number of edges in \(\mathcal {S}\). If the graph is weighted, then A(uv) contains the weight (i.e., the strength) of the edge among u and v; if it is not weighted then A(uv) is equal to one if and only if there is an edge among u and v. While computing the conductance (9) of any subset \(\mathcal {S}\subset \mathcal {V}\) is simple, computing the conductance of the graph \(\Phi (G)\) consists in solving the following NP-hard problem (Chung 1994):

$$\begin{aligned} \Phi (G) = \min _{S\subset \mathcal {V}} \phi (S). \end{aligned}$$
(10)

Finding the global optimum is infeasible even for small graphs. As a consequence, many approximation techniques have been proposed so far (Leighton and Rao 1999; Arora et al. 2009; Madry 2010; Gkantsidis et al. 2003; Sarma et al. 2011).

Among the many techniques, spectral techniques (Chung 1994) provide a very powerful approach. Let \(\mathbf {A}\) be the (weighted) adjacency matrix of G, and let \(\mathbf {D}\) be diagonal matrix containing the vertex degrees:

$$\begin{aligned} \mathbf {D} = \mathrm {diag}(d_1,\ldots ,d_n), \mathrm {where}\ d_i = \sum _{j=1}^{n} A(i,j). \end{aligned}$$
(11)

Let us define the transition matrix \(\mathbf {M}\) as:

$$\begin{aligned} \mathbf {M} = \mathbf {D}^{-1} \mathbf {A}. \end{aligned}$$
(12)

The matrix \(\mathbf {M}\) is not always symmetric. Therefore, it does not always admit a spectral representation of the form \(\mathbf {M}=\mathbf {U}\Lambda \mathbf {U}^T\), where \(\Lambda \) is a diagonal matrix containing the n eigenvalues and \(\mathbf {U}\) is a matrix containing the corresponding eigenvectors. Notwithstanding, \(\mathbf {M}\) is conjugate to a symmetric matrix, \(\mathbf {N}\), which is defined as follows:

$$\begin{aligned} \mathbf {N} = \mathbf {D}^{-1/2}\mathbf {A}\mathbf {D}^{-1/2} = \mathbf {D}^{1/2}\mathbf {M}\mathbf {D}^{-1/2}. \end{aligned}$$
(13)

\(\mathbf {M}\) and \(\mathbf {N}\) have the same eigenvalues and the eigenvectors are linearly correlated (Lovász 1996; Chung 1994). The eigenvalues of \(\mathbf {N}\) satisfy the following relation:

$$\begin{aligned} 1 = \lambda _1 > \lambda _2 \ge \cdots \ge \lambda _n \ge -1. \end{aligned}$$
(14)

The celebrated Cheeger inequality (Lovász 1996) establishes an important relation among the conductance of G (10) with \(\lambda _2\):

$$\begin{aligned} \frac{\Phi (G)^2}{8} \le 1 - \lambda _2 \le \Phi (G), \end{aligned}$$
(15)

which can be rewritten as:

$$\begin{aligned} 1-\lambda _2 \le \Phi (G) \le \sqrt{8(1-\lambda _2)}. \end{aligned}$$
(16)

Since \(\phi (S) \ge \Phi (G)\) for any \(\mathcal {S}\subset \mathcal {V}\), Eq. (16) can be used as a local reference for a specific graph. According to Eq. (16), it is possible to define the lower and the upper bound of the graph conductance as

$$\begin{aligned} \mathrm {lb}(\Phi (G))&= 1-\lambda _2, \nonumber \\ \mathrm {ub}(\Phi (G))&= \sqrt{8(1-\lambda _2)}, \end{aligned}$$
(17)

which can be used for evaluating how much the conductance of a cut \(\phi (S)\) is close to the conductance of the whole graph, \(\Phi (G)\).

To make use of the bounds of Eq. (17), we need to compute the \(\lambda _2\) eigenvalue. The QR decomposition (Trefethen and Bau 1997) is the most straightforward numerical technique for this purpose, which is, however, characterized by a cubic computational complexity. To overcome this drawback, we can use the power method described in Trefethen and Bau (1997), a fast algorithm that is able to compute in pseudo-linear time the largest eigenvalue and related eigenvector of a positive semi-definite (PSD) matrix. Notably, the computational complexity of the power method is \(O((\mathcal {V} + |\mathcal {E}|) \frac{1}{\epsilon } \log {\frac{|\mathcal {V}|}{\epsilon }})\), where \(\epsilon \ge 0\) is the approximation used in computing \(\lambda _2\). Algorithm 1 describes the pseudo-code of the power method. The algorithm starts by randomly initializing a vector, \(\mathbf {x}_0 \in [-1, 1]^n\); it returns the vector \(\mathbf {x}_t = \widetilde{\mathbf {M}}^t \mathbf {x}_0\), where \(\widetilde{\mathbf {M}}\) is the PSD under analysis. The following theorem is an important result for the convergence of the power method (Arora et al. 2008; Hoory et al. 2006).

Theorem 1

For every PSD matrix \(\widetilde{\mathbf {M}}\), positive integer t, a parameter \(\epsilon > 0\) and a vector \(\mathbf {x}_0\) randomly picked with uniform probability p in \([-1,1]^n\), with \(p> \frac{3}{16}\) over the choice of \(\mathbf {x}_0\), the power method outputs a vector \(\mathbf {x}_t\) such that

$$\begin{aligned} \frac{\mathbf {x}_t^\intercal \widetilde{\mathbf {M}} \mathbf {x}_t}{\mathbf {x}_t^\intercal \mathbf {x}_t} \ge \lambda _1(1-\epsilon ) \frac{1}{1+4n(1-\epsilon )^{2t}}, \end{aligned}$$
(18)

where \(\lambda _1\) is the largest eigenvalue.

The eigenvector \(\mathbf {v}_1\) related to \(\lambda _1\) would be approximated by \(\frac{\mathbf {x}_t}{\Vert \mathbf {x}_t \Vert }\). Given a PSD matrix \(\widetilde{\mathbf {M}}\) and the (unitary) eigenvector \(\mathbf {v}_1\) related to \(\lambda _1\), we can compute \(\lambda _2\) by means of Algorithm 2, which is a variation of Algorithm 1. The algorithm (2) returns a vector \(\mathbf {x}_t \bot \mathbf {v}_1\), such that

$$\begin{aligned} \frac{\mathbf {x}_t^\intercal \widetilde{\mathbf {M}} \mathbf {x}_t}{\mathbf {x}_t^\intercal \mathbf {x}_t} \ge \lambda _2(1-\epsilon ) \frac{1}{1+4n(1-\epsilon )^{2t}}. \end{aligned}$$
(19)

The power method can only be applied to a PSD matrix, which is not the case of \(\mathbf {N}\), whose eigenvalues are the ones in Eq. (14). Consider now the matrix \(\overline{\mathbf {N}} = \mathbf {N} + \mathbf {I}\). Every eigenvector of \(\mathbf {N}\) with eigenvalue \(\lambda \) is clearly also an eigenvector of \(\overline{\mathbf {N}}\) with eigenvalue \(1+\lambda \) and vice versa, thus \(\overline{\mathbf {N}}\) has eigenvalues \(2 = 1+\lambda _1 > 1+\lambda _2 \ge \cdots \ge 1+\lambda _n \ge 0\) and thus it is PSD.

Using \(\mathbf {v}_1\) (an eigenvector of \(\lambda _1\) computed with Algorithm 1), and setting \(t = O(\epsilon ^{-1} \log {\frac{n}{\epsilon }})\), Algorithm 2 will find with probability at least 3 / 16 a vector \(\mathbf {x}_t \bot \mathbf {1}\), such that

$$\begin{aligned} \frac{\mathbf {x}_t^\intercal \widetilde{\mathbf {M}} \mathbf {x}_t}{\mathbf {x}_t^\intercal \mathbf {x}_t} \ge \lambda _2 -4 \epsilon . \end{aligned}$$
(20)

From Eq. (20), it is possible to derive the approximation of \(\lambda _2\) that in turn can be used in Eq. (17).

figure a
figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchi, F.M., Maiorino, E., Livi, L. et al. An agent-based algorithm exploiting multiple local dissimilarities for clusters mining and knowledge discovery. Soft Comput 21, 1347–1369 (2017). https://doi.org/10.1007/s00500-015-1876-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1876-1

Keywords

Navigation