[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The entropy of semi-independent hyper MV-algebra dynamical systems

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, the notion of a semi-independent dynamical system on a hyper MV-algebra is introduced. The concept of the entropy for a semi-independent hyper MV-algebra dynamical system is developed, and its characteristics are considered. The notion of equivalent semi-independent systems is defined, and it is proved the fact that two equivalent semi-independent hyper MV-algebra dynamical systems have the same entropy. Theorems to help calculate the entropy are given. Specifically, a new version of Kolmogorov–Sinai Theorem has been proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Amigó JM, Giménez Á, Kloeden PE (2013) Entropy increase in switching systems. Entropy 15(6):2363–2383

    Article  MathSciNet  MATH  Google Scholar 

  • Blute RF, Lamarche F, Rute P (2002) Entropic Hoph algebras and models of non-commutative logic. Theory Appl Categ 10(17):424–460

    MathSciNet  MATH  Google Scholar 

  • Brown RJ (2007) The algebraic entropy of the special linear character automorphisms of a free group on two generators. Trans Am Math Soc 359(4):1445–1470

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Z, Jiang Y, Liu H, Tang Y (2013) Entropy on intuitionistic fuzzy soft sets and on interval-valued fuzzy soft sets. Inf Sci 240:95–114

    Article  MathSciNet  MATH  Google Scholar 

  • Chung NP, Thom A (2015) Some remarks on the entropy for algebraic actions of amenable groups. Trans Am Math Soc 367:8579–8595

    Article  MathSciNet  MATH  Google Scholar 

  • Corsini P, Leoreanu V (2003) Applications of hyperstructure theory. Kluwer, Boston

    Book  MATH  Google Scholar 

  • Davvaz B, Dehghan Nezhad A, Benvidi A (2012) Chemical hyperalgebra: dismutation reactions. MATCH Commun Math Comput Chem 67:55–63

    MathSciNet  Google Scholar 

  • Davvaz B, Leoreanu-Fotea V (2007) Hyperring theory and applications. International Academic Press, USA

    MATH  Google Scholar 

  • Di Nola A, Dvurečenskij A, Hyčko M, Manara C (2005) Entropy on effect algebras with the Riesz decomposition property I: basic properties. Kybernetika 41(2):143–160

  • Di Nola A, Dvurečenskij A, Hyčko M, Manara C (2005) Etropy on effect algebras with the Riesz decomposition property II: \(MV\)-algebras. Kybernetika 41(2):161–176

  • Dikranjan D, Goldsmith B, Salce L, Zanardo P (2009) Algebraic entropy for abelian groups. Trans Am Math Soc 361(7):3401–3434

    Article  MathSciNet  MATH  Google Scholar 

  • Dikranjan D, Sanchis M, Virili S (2012) New and old facts about entropy in uniform spaces and topological groups. Topol Appl 159:1916–1942

    Article  MathSciNet  MATH  Google Scholar 

  • Dikranjan D, Gongb K, Zanardo P (2013) Endomorphisms of abelian groups with small algebraic entropy. Linear Algebra Appl 439(7):1894–1904

    Article  MathSciNet  MATH  Google Scholar 

  • Dikranjan D, Giordano Bruno A (2014) Entropy on abelian groups. arXiv:1007.0533 (preprint)

  • Dikranjan D, Giordano Bruno A (2012) The connection between topological and algebraic entropy. Topol Appl 159:2980–2989

    Article  MathSciNet  MATH  Google Scholar 

  • Ebrahimi M (2006) Generators of probability dynamical systems. Differ Geom Dyn Syst 8:90–97

    MathSciNet  MATH  Google Scholar 

  • Ebrahimi M, Mohammadi N (2010) The entropy function on an algebraic structure with infinite partition and \(m\)-preserving transformation generators. Appl Sci 12:1–10

    MathSciNet  Google Scholar 

  • Ebrahimi M, Mohammadi U (2012) \(m\)-Generator of fuzzy dynamical systems. Cankaya Univ J Sci Eng 9(2):167–182

    Google Scholar 

  • Ebrahimi M, Musapour B (2013) The concept of entropy on \(D\)-posets. Cankaya Univ J Sci Eng 10(1):137–151

    Google Scholar 

  • Ghorbani S, Eslami E, Hasankhani A (2007) Quotient hyper \(MV\)-algebras. Sci Math Jpn 3:371–386

    MathSciNet  MATH  Google Scholar 

  • Ghorbani S, Torkzadeh L (2012) Some characterizations of hyper \(MV\)-algebras. J Mahani Math Res Cent 1(2):147–161

    MATH  Google Scholar 

  • Giordano Bruno A, Salce L (2012) A soft introduction to algebraic entropy. Arab J Math 1:69–87

    Article  MathSciNet  MATH  Google Scholar 

  • Jun YB, Kang MS, Kim HS (2010) Hyper \(MV\)-deductive system of hyper \(MV\)-algebras. Commun Korean Math Soc 25(4):537–545

    Article  MathSciNet  MATH  Google Scholar 

  • Majidi-Zolbanin M, Miasnikov N, Szpiro L (2014) Entropy in local algebraic dynamics. Math Annal (to appear)

  • Petrovičová J (2001) On the entropy of dynamical systems in product \(MV\)-algebras. Fuzzy Sets Syst 121:347–351

    Article  MathSciNet  MATH  Google Scholar 

  • Rasouli S, Heidari D, Davvaz B (2009) \(\eta \)-Relations and transitivity conditions of \(\eta \) on hyper \(MV\)-algebras. J Mult-Valued Log Soft Comput 15:517–524

    MathSciNet  MATH  Google Scholar 

  • Rasouli S, Davvaz B (2011) Homomorphisms, ideals and binary relations on hyper \(MV\)-algebras. J Mult-Valued Logic Soft Comput 17:47–68

    MathSciNet  MATH  Google Scholar 

  • Riečan B (2005) Kolmogorov–Sinaj entropy on \(MV\)-algebras. Int J Theor Phy 44(7):1041–1052

    Article  MathSciNet  MATH  Google Scholar 

  • Salce L (2008) Algebraic entropy for modules. In: International conference on modules and representation theory, Cluj-Napoca, July 2008

  • Scarfone AM (2013) Entropic forms and related algebras. Entropy 15(2):624–649

    Article  MathSciNet  MATH  Google Scholar 

  • Walters P (1982) An introduction to ergodic theory. Springer, New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ebrahimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Di Nola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrpooya, A., Ebrahimi, M. & Davvaz, B. The entropy of semi-independent hyper MV-algebra dynamical systems. Soft Comput 20, 1263–1276 (2016). https://doi.org/10.1007/s00500-015-1850-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1850-y

Keywords

Navigation