[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Analyzing the solution of a system of fuzzy linear equations by a fuzzy distance

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

We introduce a fuzzy norm on a subset of all fuzzy numbers by a distance and we use it to analyze an approximate solution of a system of fuzzy linear equations. By a theorem we give two error bounds for error of an approximate solution of a system of fuzzy linear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abbasbandy S, Amirfakhrian M (2006a) The nearest approximation of a fuzzy quantity in parametric form. Appl Math Comput 172:624–632

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy S, Amirfakhrian M (2006b) The nearest trapezoidal form of a generalized left right fuzzy number. Int J Approx Reason 43:166–178

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy S, Asady B (2004) The nearest trapezoidal fuzzy number to a fuzzy quantity. Appl Math Comput 156:381–386

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy S, Jafarian A (2006) Steepest descent method for system of fuzzy linear equations. Appl Math Comput 175:823–833

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy S, Jafarian A, Ezzati R (2005) Conjugate gradient method for fuzzy symmetric positive definite system of linear equations. Appl Math Comput 171:1184–1191

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy S, Ezzati R, Jafarian A (2006) LU decomposition method for solving fuzzy system of linear equations. Appl Math Comput 172:633–643

    Article  MathSciNet  MATH  Google Scholar 

  • Amirfakhrian M (2007) Numerical solution of fuzzy linear system of equations with polynomial parametric form. Int J Comput Math 84:1089–1097

    Article  MathSciNet  MATH  Google Scholar 

  • Amirfakhrian M (2010a) Properties of parametric form approximation operator of fuzzy numbers. Analele Stiintifice ale Universitatii Ovidius Constanta 18:23–34

    MathSciNet  MATH  Google Scholar 

  • Amirfakhrian M (2010b) Numerical solution of a system of polynomial parametric form fuzzy linear equations, chap 24. In: Ferroelectrics. INTECH, India

  • Atkinson K (1989) An introduction to numerical analysis, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Bag T, Samanta SK (2008) A comparative study of fuzzy norms on a linear space. Fuzzy Sets Syst 159:670–684

    Article  MathSciNet  MATH  Google Scholar 

  • Ban A (2008) Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected interval. Fuzzy Sets Syst 159:1327–1344

    Article  MathSciNet  MATH  Google Scholar 

  • Ban AI (2009) Triangular and parametric approximations of fuzzy numbers-inadvertences and corrections. Fuzzy Sets Syst 160:3048–3058

    Article  MathSciNet  MATH  Google Scholar 

  • Bertoluzza C, Corral N, Salas A (1995) On a new class of distances between fuzzy numbers.. Mathware Soft Comput 2:71–84

    MathSciNet  MATH  Google Scholar 

  • Buckley JJ, Qu Y (1991) Solving systems of linear fuzzy equations. Fuzzy Sets Syst 43:33–43

    Article  MathSciNet  MATH  Google Scholar 

  • Chong-Xin W, Ming M (1991) Embedding problem of of fuzzy number space: part I. Fuzzy Sets Syst 44:33–38

    Article  Google Scholar 

  • Das NR, Pankaja Das (1999) Fuzzy topology generated by fuzzy norm. Fuzzy Sets Syst 107:349–354

    Article  MATH  Google Scholar 

  • Dehghan M, Hashemi B (2006a) Iterative solution of fuzzy linear systems. Appl Math Comput 175:645–674

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Hashemi B (2006b) Solution of the fully fuzzy linear systems using the decomposition procedure. Appl Math Comput 182:1568–1580

    Article  MathSciNet  MATH  Google Scholar 

  • Delgado M, Vila MA, Voxman W (1998) On a canonical representation of fuzzy numbers. Fuzzy Sets Syst 93:125–135

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D, Prade H (1980a) Systems of linear fuzzy constraints. Fuzzy Sets Syst 3:37–48

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D, Prade H (1980b) Fuzzy sets and systems: theory and application. Academic Press, New York

    Google Scholar 

  • Friedman M, Ming M, Kandel A (1998) Fuzzy linear systems. Fuzzy Sets Syst 96:201–209

    Article  MathSciNet  MATH  Google Scholar 

  • Ghanbari R, Mahdavi-Amiri N (2010) New solutions of LR fuzzy linear systems using ranking functions and ABS algorithms. Appl Math Model 34:3363–3375

    Article  MathSciNet  MATH  Google Scholar 

  • Gill PE, Murray W, Wright MH (1991) Numerical linear algebra and optimization. Addison-Wesley

  • Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press

  • Grzegorzewski P (2008) Trapezoidal approximations of fuzzy numbers preserving the expected interval: algorithms and properties. Fuzzy Sets Syst 159:1354–1364

    Article  MathSciNet  MATH  Google Scholar 

  • Grzegorzewski P, Mrówka P (2005) Trapezoidal approximations of fuzzy numbers. Fuzzy Sets Syst 153:115–135

    Article  MATH  Google Scholar 

  • Grzegorzewski P, Mrówka E (2007) Trapezoidal approximations of fuzzy numbers-revisited. Fuzzy Sets Syst 158:757–768

    Article  MATH  Google Scholar 

  • Heilpern S (1997) Representation and application of fuzzy numbers. Fuzzy Sets Syst 91:259–268

    Article  MathSciNet  MATH  Google Scholar 

  • Horck R (2008) Solution of a system of linear equations with fuzzy numbers. Fuzzy Sets Syst 159:1788–1810

    Article  Google Scholar 

  • Jian-Xin L (1994) On an algorithm for solving fuzzy linear systems. Fuzzy Sets Syst 61:369–371

    Article  MATH  Google Scholar 

  • Laub AJ (2005) Matrix analysis for scientists engineers. SIAM, USA

    Book  MATH  Google Scholar 

  • Liua X, Lin H (2007) Parameterized approximation of fuzzy number with minimum variance weighting functions. Math Comput Model 46:1398–1409

    Article  Google Scholar 

  • Muzzioli S, Reynaerts H (2007) The solution of fuzzy linear systems by non-linear programming: a financial application. Eur J Oper Res 177:1218–1231

    Article  MATH  Google Scholar 

  • Nasibov EN, Peker S (2008) On the nearest parametric approximation of a fuzzy number. Fuzzy Sets Syst 159:1365–1375

    Article  MathSciNet  MATH  Google Scholar 

  • Peeva K (1992) Fuzzy linear systems. Fuzzy Sets Syst 49:339–355

    Article  MathSciNet  MATH  Google Scholar 

  • Voxman W (1998) Some remarks on distance between fuzzy numbers. Fuzzy Sets Syst 100:353–365

    Article  MathSciNet  MATH  Google Scholar 

  • Vroman A, Deschrijver G, Kerre EE (2007) Solving systems of linear fuzzy equations by parametric functions: an improved algorithm. Fuzzy Sets Syst 158:1515–1534

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Zhong Z, Ha M (2001) Iteration algorithms for solving a system of fuzzy linear equations. Fuzzy Sets Syst 119:121–128

    Article  MathSciNet  MATH  Google Scholar 

  • Yeh CT (2007) A note on trapezoidal approximations of fuzzy numbers. Fuzzy Sets Syst 158:747–754

    Article  MATH  Google Scholar 

  • Yeh CT (2008) Trapezoidal and triangular approximations preserving the expected interval. Fuzzy Sets Syst 159:1345–1353

    Article  MATH  Google Scholar 

  • Zheng B, Wang Ke (2006) General fuzzy linear systems. Appl Math Comput 181:1276–1286

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann HJ (1991) Fuzzy set theory and its applications, 2nd edn. Kluwer, Boston

    MATH  Google Scholar 

Download references

Acknowledgments

The author is very grateful to the anonymous referees and the editor, Prof. Luis Martnez for their comments and suggestions which have been very helpful in improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Amirfakhrian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amirfakhrian, M. Analyzing the solution of a system of fuzzy linear equations by a fuzzy distance. Soft Comput 16, 1035–1041 (2012). https://doi.org/10.1007/s00500-012-0801-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-012-0801-0

Keywords

Navigation