Abstract
This paper introduces a software tool named KEEL which is a software tool to assess evolutionary algorithms for Data Mining problems of various kinds including as regression, classification, unsupervised learning, etc. It includes evolutionary learning algorithms based on different approaches: Pittsburgh, Michigan and IRL, as well as the integration of evolutionary learning techniques with different pre-processing techniques, allowing it to perform a complete analysis of any learning model in comparison to existing software tools. Moreover, KEEL has been designed with a double goal: research and educational.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alcalá R, Alcala-Fdez J, Casillas J, Cordón O, Herrera F (2006) Hybrid learning models to get the interpretabilityaccuracy trade-off in fuzzy modeling. Soft Comput 10(9): 717–734
Batista GE, Monard MC (2003) An analysis of four missing data treatment methods for supervised learning. Appl Artif Intell 17: 519–533
Bernadó-Mansilla E, Ho TK (2005) Domain of competence of XCS classifier system in complexity measurement space. IEEE Trans Evol Comput 9(1): 82–104
Berthold MR, Cebron N, Dill F, Di Fatta G, Gabriel TR, Georg F, Meinl T, Ohl P (2006) KNIME: The Konstanz Information Miner, In: Proceedings of the 4th annual industrial simulation conference, Workshop on multi-agent systems and simulations, Palermo
Cano JR, Herrera F, Lozano M (2003) Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study. IEEE Trans Evol Comput 7(6): 561–575
Cordón O, del Jesus MJ, Herrera F, Lozano M (1999) MOGUL: a methodology to obtain genetic fuzzy rule-based systems under the iterative rule learning approach. Int J Intell Syst 14(9): 1123–1153
Cordón O, Herrera F, Sánchez L (1999) Solving electrical distribution problems using hybrid evolutionary data analysis techniques. Appl Intell 10: 5–24
Cordón O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic fuzzy systems: Evolutionary tuning and learning of fuzzy knowledge bases. World Scientific, Singapore, p 488
Chuang AS (2000) An extendible genetic algorithm framework for problem solving in a common environment. IEEE Trans Power Syst 15(1): 269–275
del Jesus MJ, Hoffmann F, Navascues LJ, Sánchez L (2004) Induction of Fuzzy-Rule-Based Classifiers with Evolutionary Boosting Algorithms. IEEE Trans Fuzzy Syst 12(3): 296–308
Demšar J, Zupan B Orange: From experimental machine learning to interactive data mining, White Paper (http://www.ailab.si/orange). Faculty of Computer and Information Science, University of Ljubljana
Dietterich TG (1998) Approximate Statistica Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation 10(7): 1895–1924
Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, Berlin, p 299
Freitas AA (2002) Data mining and knowledge discovery with evolutionary algorithms. Springer, Berlin, p 264
Gagné C, Parizeau M (2006) Genericity in evolutionary computation sofyware tools: principles and case-study Int J Artif Intell Tools 15(2): 173–194
Ghosh A, Jain LC (2005) Evolutionary Computation in Data Mining. Springer, New York, pp 264
Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, New York, pp 372
Grefenstette JJ (1993) Genetic Algorithms for Machine Learning. Kluwer, Norwell, p 176
Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, London, p 228
Keijzer M, Merelo JJ, Romero G, Schoenauer M (2001) Evolving objects: A general purpose evolutionary computation library. In: Collet P, Fonlupt C, Hao JK, Lutton E, Schoenauer M (eds) Artificial evolution: selected papers from the 5th european conference on artificial evolution, London, UK, pp 231–244
Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence 2(12):1137–1143
Krasnogor N, Smith J (2000) MAFRA: A Java memetic algorithms framework. In: Proceedings of the Genetic and Evolutionary Computation Workshops. Las Vegas, Nevada, USA, pp 125–131
Llorà X (2006) E2K: Evolution to knowledge. SIGEVOlution 1(3): 10–16
Llorà X, Garrell JM (2003) Prototype induction and attribute selection via evolutionary algorithms. Int Data Anal 7(3): 193–208
Liu H, Hussain F, Lim C, Dash M (2002) Discretization: an enabling technique. Data Min Knowl Discov 6(4): 393–423
Luke S, Panait L, Balan G, Paus S, Skolicki Z, Bassett J, Hubley R, Chircop A (2007) ECJ: A Java based evolutionary computation research system. http://cs.gmu.edu/~eclab/projects/ecj
Martínez-Estudillo A, Martínez-Estudillo F, Hervás-Martínez C, García-Pedrajas N (2006) Evolutionary product unit based neural networks for regression. Neural Netw 19: 477–486
Meyer M, Hufschlag K (2006) A generic approach to an object-oriented learning classifier system library. Journal of Artificial Societies and Social Simulation 9:3 http://jasss.soc.surrey.ac.uk/9/3/9.html
Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T (2006) YALE: Rapid Prototyping for Complex Data Mining Tasks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1–6
Morik K, Scholz M (2004) The MiningMart Approach to Knowledge Discovery in Databases. In: Zhong N, Liu J (eds) Intelligent Technologies for Information Analysis. Springer, Heidelberg, pp 47–65
Mucientes M, Moreno DL, Bugarín A, Barro S (2006) Evolutionary learning of a fuzzy controller for wallfollowing behavior in mobile robotics. Soft Comput 10(10): 881–889
Oh IS, Lee JS, Moon BR (2004) Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell 26(11): 1424–1437
Ortega M, Bravo J (2000) Computers and education in the 21st century. Kluwer, Norwell, p 266
Otero J, Sánchez L (2006) Induction of descriptive fuzzy classifiers with the Logitboost algorithm. Soft Comput 10(9): 825–835
Pal SK, Wang PP (1996) Genetic algorithms for pattern recognition. CRC Press, Boca Raton,p 336
Punch B, Zongker D (1998) lib-gp 1.1 beta. http://garage.cse.msu.edu/software/lil-gp
Pyle D (1999) Data preparation for data mining. Morgan Kaufmann, San Mateo, p 540
Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann, San Mateo, p 316
R Development Core Team (2005) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria http://www.R-project.org
Rakotomalala R (2005) TANAGRA: un logiciel gratuit pour l’enseignement et la recherche. In: Proceedings of the 5th Journées d’Extraction et Gestion des Connaissances 2:697–702
Rivera AJ, Rojas I, Ortega J, del Jesus MJ (2007) A new hybrid methodology for cooperative-coevolutionary optimization of radial basis function networks. Soft Comput 11(7): 655–668
Rodríguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28(10): 1619–1630
Romero C, Ventura S, Bra P (2004) Knowledge discovery with genetic programming for providing feedback to courseware author, user modeling and user-adapted interaction. J Personal Res 14(5): 425–465
Rummler A (2007) Evolvica: a Java framework for evolutionary algorithms. http://www.evolvica.org
Rushing J, Ramachandran R, Nair U, Graves S, Welch R, Lin H (2005) ADaM: a data mining toolkit for scientists and engineers. Comput Geosci 31(5): 607–618
Sonnenburg S, Braun ML, Ong ChS, Bengio S, Bottou L, Holmes G, LeCun Y, Müller K-R, Pereira F, Rasmussen CE, Rätsch G, Schölkopf B, Smola A, Vincent P, Weston J, Williamson RC (2007) The need for open source software in machine learning. J Mach Learn Res 8: 2443–2466
Stejić Z, Takama Y, Hirota K (2007) Variants of evolutionary learning for interactive image retrieval. Soft Comput 11(7): 669–678
Tan JC, Lee TH, Khoo D, Khor EF (2001) A multiobjective evolutionary algorithm toolbox for computer-aided multiobjective optimization. IEEE Trans Syst Man Cybern B Cybern 31(4): 537–556
Tan JC, Tay A, Cai J (2003) Design and implementation of a distributed evolutionary computing software. IEEE Trans Syst Man Cybern B Cybern 33(3): 325–338
Tan PN, Steinbach M, Kumar V (2006) Introduction to Data Mining. Addison-Wesley, Reading, p 769
Ventura S, Romero C, Zafra A, Delgado JA, Hervás C (2008) JCLEC: a java framework for evolutionary computation. Soft Comput 12(4): 381–392
Wang LX, Mendel JM (1992) Generating fuzzy rules by learning from examples. IEEE Trans Syst Man Cybern 22(6): 1414–1427
Wang X, Nauck DD, Spott M, Kruse R (2007) Intelligent data analysis with fuzzy decision trees. Soft Comput 11(5): 439–457
Wilson SW (1995) Classifier fitness based on accuracy. Evol Comput 3(2): 149–175
Wilson DR, Martinez TR (2000) Reduction techniques for instance-based learning algorithms. Mach Learn 38: 257–268
Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco, p 525. http://www.cs.waikato.ac.nz/ml/weka/index.html
Wong ML, Leung KS (2000) Data mining using grammar based genetic programming and applications. Kluwer, Norwell, p 232
Zhang S, Zhang C, Yang Q (2003) Data preparation for data mining. Appl Artif Intell 17: 375–381
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the Spanish Ministry of Science and Technology under Projects TIN-2005-08386-C05-(01, 02, 03, 04 and 05). The work of Dr. Bacardit is also supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under grant GR/T07534/01.
Rights and permissions
About this article
Cite this article
Alcalá-Fdez, J., Sánchez, L., García, S. et al. KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput 13, 307–318 (2009). https://doi.org/10.1007/s00500-008-0323-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-008-0323-y