[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

(Weak) Dual hyper K-ideals

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this note by considering the notion of (weak) dual hyper K-ideal, we obtain some related results. After that we determine the relationships between (weak) dual hyper K-ideals and (weak) hyper K-ideals. Finally, we give a characterization of hyper K-algebras of order 3 or 4 based on the (weak) dual hyper K-ideals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Borzooei RA, Bakhshi M (2004) Weak implicative hyper BCK-ideals. J Quasigroups Relat Syst 12:13–28

    MATH  MathSciNet  Google Scholar 

  • Borzooei RA, Bakhshi M (2004) Some results on hyper BCK-algebras. J Quasigroups Relat Syst 11:9–24

    MATH  MathSciNet  Google Scholar 

  • Borzooei RA, Corsini P, Zahedi MM (2003) Some kinds of positive implicative hyper K-ideals. J. Discrete Math Cryptogr 6: 97–108

    MATH  MathSciNet  Google Scholar 

  • Borzooei RA, Hasankhani A, Zahedi MM, Jun YB (2000) On hyper K-algebras. Math Japon 52(1):113–121

    MathSciNet  Google Scholar 

  • Borzooei RA, Zahedi MM (2001) Positive implicative hyper K-ideals. Sci Math Japon 53(3):525–533

    MathSciNet  Google Scholar 

  • Imai Y, Iseki K (1966) On axiom systems of propositional calculi. XIV Proc Jpn Acad 42:19–22

    Article  MATH  MathSciNet  Google Scholar 

  • Iseki K, Tanaka S (1978) An introduction to the theory of BCK-algebras. Math Japon 23:1–26

    MATH  MathSciNet  Google Scholar 

  • Marty F (1934) Sur une generalization de la notion de groups. 8th congress Math. Scandinaves, Stockholm, pp 45–49

  • Meng J, Jun YB (1994) BCK-algebras. Kyung Moonsa, Seoul

    MATH  Google Scholar 

  • Torkzadeh L, Zahedi MM (2002) Dual positive implicative hyper K-ideals of type 3. J Quasigroups Relat Syst 9:85–106

    MATH  MathSciNet  Google Scholar 

  • Torkzadeh L, Zahedi MM (2004) Dual positive implicative hyper K-ideals of type 4. Sci Math Japon 59(3):591–603, e9, 583–595

    Google Scholar 

  • Torkzadeh L, Zahedi MM (2005) (Anti) Fuzzy dual positive implicative hyper K-ideals. Ital J Pure Appl Math No. 17 (69–82)

    Google Scholar 

  • Torkzadeh L, Zahedi MM (2007) Dual commutative hyper K-ideals. Set Valued Math Appl (to appear)

  • Zahedi MM, Borzooei RA, Jun YB, Hasankhani A (2000) Some results on hyper K-algebra. Sci Math 3(1):53–59

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Torkzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torkzadeh, L., Zahedi, M.M. & Abbasi, M. (Weak) Dual hyper K-ideals. Soft Comput 11, 985–990 (2007). https://doi.org/10.1007/s00500-006-0147-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-006-0147-6

Keywords

Navigation