[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Colouring Number of Infinite Graphs

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We show that, given an infinite cardinal μ, a graph has colouring number at most μ if and only if it contains neither of two types of subgraph. We also show that every graph with infinite colouring number has a well-ordering of its vertices that simultaneously witnesses its colouring number and its cardinality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Dushnik and E. W. Miller: Partially ordered sets, Amer. J. Math.63 (1941), 600–610.

    Article  MathSciNet  Google Scholar 

  2. P. Erdős and A. Hajnal, A.: On chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hungar17 (1966), 61–99.

    Article  MathSciNet  Google Scholar 

  3. R. Halin. Graphentheorie, Wissenschaftliche Buchgesellschaft, Darmstadt, 2 edition, 1989.

    MATH  Google Scholar 

  4. P. Komjáth: Infinite graphs, Research Monograph. In Preparation.

  5. P. Komjáth: A note on uncountable chordal graphs, Discrete Math.338 (2015), 1565–1566.

    Article  MathSciNet  Google Scholar 

  6. P. Komjáth: Hadwiger's conjecture for uncountable graphs, Abh. Math. Semin. Univ. Hambg.87 (2017), 337–341.

    Article  MathSciNet  Google Scholar 

  7. K. Kunen: Set theory, volume 34 of Studies in Logic (London), College Publications, London, 2011.

    MATH  Google Scholar 

  8. S. Shelah: A compactness theorem for singular cardinals, free algebras, whitehead problem and transversals, Israel J. Math.21 (1975), 319–349.

    Article  MathSciNet  Google Scholar 

  9. S. Shelah: Notes on partition calculus, Colloq. Math. Soc. János Bolyai, Vol. 10. 1975, 1257–1276.

    MathSciNet  MATH  Google Scholar 

  10. W. Sierpiński: Sur un problème de la théorie des relations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2)2 (1933), 285–287.

    MATH  Google Scholar 

Download references

Acknowledgments

We thank the first referee of this paper for pointing out to mention Theorem 1.5 in the Introduction and Lemma 2.7.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathan Bowler, Johannes Carmesin, Péter Komjáth or Christian Reiher.

Additional information

This research was supported by Thematic Excellence Programme, Industry and Digitization Subprogramme, NRDI Office, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowler, N., Carmesin, J., Komjáth, P. et al. The Colouring Number of Infinite Graphs. Combinatorica 39, 1225–1235 (2019). https://doi.org/10.1007/s00493-019-4045-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-019-4045-9

Mathematics Subject Classification (2010)