[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Tight Chiral Polyhedra

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A chiral polyhedron with Schläfli symbol {p,q} is called tight if it has 2pq flags, which is the minimum possible. In this paper, we fully characterize the Schläfli symbols of tight chiral polyhedra. We also provide presentations for the automorphism groups of several families of tight chiral polyhedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. D’Azevedo, G. Jones and E. Schulte: Constructions of chiral polytopes of small rank, Canad. J. Math. 63 (2011), 1254–1283.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Conder: Chiral polytopes with up to 2000 ags, https://www.math.auckland.ac.nz/~conder/ChiralPolytopesWithFewFlags-ByType.txt

  3. M. Conder and G. Cunningham: Tight orientably-regular polytopes, Ars Mathematica Contemporanea 8 (2015), 68–81.

    MathSciNet  MATH  Google Scholar 

  4. G. Cunningham: Mixing chiral polytopes, J. Alg. Comb. 36 (2012), 263–277.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Cunningham: Minimal equivelar polytopes, Ars Mathematica Contemporanea 7 (2014), 299–315.

    MathSciNet  MATH  Google Scholar 

  6. G. Cunningham and D. Pellicer: Classification of tight regular polyhedra, Journal of Algebraic Combinatorics 43 (2016), 665–691.

    Article  MathSciNet  MATH  Google Scholar 

  7. The GAP Group: GAP–Groups, Algorithms, and Programming, Version 4.4.12, 2008.

  8. P. McMullen and E. Schulte: Abstract regular polytopes, Encyclopedia of Mathematics and its Applications, vol. 92, Cambridge University Press, Cambridge, 2002.

    Book  MATH  Google Scholar 

  9. E. Schulte and A. I. Weiss: Chiral polytopes, Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, Amer. Math. Soc., Providence, RI, 1991, 493–516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabe Cunningham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunningham, G. Tight Chiral Polyhedra. Combinatorica 38, 115–142 (2018). https://doi.org/10.1007/s00493-016-3505-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-016-3505-8

Mathematics Subject Classification (2000)

Navigation