[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Robust hierarchic control for a population dynamics model with missing birth rate

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the hierarchic control problem for a linear system of a population dynamics model with an unknown birth rate. Using the notion of low-regret control and an adapted observability inequality of Carleman type, we show that there exist two controls such that, the first control called follower solves an optimal control problem which consists in bringing the state of the linear system to the desired state, and the second one named leader is supposed to lead the population to extinction at final time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainseba B, Langlais M (1996) Sur un problème de contrôle d’une population structurée en âge et en espace(French) [On a population control problem dynamics with age dependence and spatial structure]. C R Acad Sci Paris Sér I Math 323(3):269–274

    MathSciNet  MATH  Google Scholar 

  2. Langlais M (1985) A nonlinear problem in age-dependent population diffusion. SIAM J Math Anal 16(3):510–529

    Article  MathSciNet  Google Scholar 

  3. Garroni MG, Langlais M (1982) Age-dependent population diffusion with external constraint. J Math Biol 14(1):77–94

    Article  MathSciNet  Google Scholar 

  4. von Stackelberg H (1934) Markform und gleichgewicht. Springer, Berlin

    MATH  Google Scholar 

  5. Lions JL (1994) Some remarks on Stackelberg’s optimization. Math Models Methods Appl Sci 4(4):477–487

    Article  MathSciNet  Google Scholar 

  6. Nakoulima O (2007) Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels. ESAIM Control Optim Calc Var 13(4):623–637

    Article  MathSciNet  Google Scholar 

  7. Mercan M (2013) Optimal control for distributed linear systems subjected to null-controllability. Appl Anal 92(9):1928–1943

    Article  MathSciNet  Google Scholar 

  8. Mercan M (2013) Optimal control for distributed linear systems subjected to null controllability with constraints on the state. In: Bourama T (ed) Advances in interdisciplinary mathematical research, vol 37. Springer proceedings in mathematics and statistics. Springer, New York, pp 213–232

    Chapter  Google Scholar 

  9. Mercan M, Nakoulima O (2015) Control of Stackelberg for a two-stroke problem. Dyn Contin Discrete Impuls Syst Ser B Appl Algorithms 22(6):441–463

    MathSciNet  MATH  Google Scholar 

  10. Kéré M, Mercan M, Mophou G (2017) Control of Stackelberg for coupled parabolic equations. J Dyn Control Syst 23(4):709–733

    Article  MathSciNet  Google Scholar 

  11. Traoré O, Ouédraogo A (2003) Sur un problème de dynamique des populations. (French) [A population dynamics problem]. IMHOTEP J Afr Math Pures Appl 4(1):15–23

    MathSciNet  MATH  Google Scholar 

  12. Kavian O, Traoré O (2011) Approximate controllability by birth control for a nonlinear population dynamics model. ESAIM Control Optim Calc Var 17(4):1198–1213

    Article  MathSciNet  Google Scholar 

  13. Jacob B, Omrane A (2010) Optimal control for age-structured population dynamics of incomplete data. J Math Anal Appl 370(1):42–48

    Article  MathSciNet  Google Scholar 

  14. Lions JL (1992) Contrôle à moindres regrets des systèmes distribués. (French) [Least-regret controls for distributed systems]. C R Acad Sci Paris Sér I Math 315(12):1253–1257

    MathSciNet  MATH  Google Scholar 

  15. Ainseba B (2002) Exact and approximate controllability of the age and space population dynamics structured model. J Math Anal Appl 275(2):562–574

    Article  MathSciNet  Google Scholar 

  16. Ainseba B, Anita S (2001) Local exact controllability of the age-dependent population dynamics with diffusion. Abstr Appl Anal 6(6):357–368

    Article  MathSciNet  Google Scholar 

  17. Ainseba B, Iannelli M (2003) Exact controllability of a nonlinear population-dynamics problem. Differ. Integr. Equ. 16(11):1369–1384

    MathSciNet  MATH  Google Scholar 

  18. Sawadogo S, Mophou G (2012) Null controllability with constraints on the state for the age-dependent linear population dynamics problem. Adv Differ Equ Control Process 10(2):113–130

    MathSciNet  MATH  Google Scholar 

  19. Ainseba B, Langlais M (2000) On a population dynamics control problem with age dependence and spatial structure. J Math Anal Appl 248(2):455–474

    Article  MathSciNet  Google Scholar 

  20. Echarroudi Y, Maniar L (2014) Null controllability of a model in population dynamics. Electron J Differ Equ 240:20

    MathSciNet  MATH  Google Scholar 

  21. Maity D, Tucsnak M, Zuazua E (2018) Sharp time null controllability of a population dynamics model with age structuring and diffusion. Hal-01764865v1

  22. Hegoburu N, Anita S (2019) Null controllability via comparison results for nonlinear age-structured population dynamics. Math Control Signals Syst 31:2. https://doi.org/10.1007/s00498-019-0232-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Traoré O (2007) Approximate controllability and application to data assimilation problem for a linear population dynamics model. IAENG Int J Appl Math 37(1):12

    MathSciNet  MATH  Google Scholar 

  24. Traoré O (2006) Null controllability of a nonlinear population dynamics problem. Int J Math Math Sci Article ID 49279, p 20

  25. Mercan M, Mophou GM (2014) Null controllability with state constraints of a linear backward population dynamics problem. Int J Evol Equ 9(1):99120

    MathSciNet  MATH  Google Scholar 

  26. Nakoulima O, Sawadogo S (2007) Internal pollution and discriminating sentinel in population dynamics problem. Int J Evol Equ 2(1):29–46

    MathSciNet  MATH  Google Scholar 

  27. Fursikov A, Imanuvilov O (1996) Controllability of evolution equations. Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul

  28. Traoré O (2010) Null controllability and application to data assimilation problem for a linear model of population dynamics. Ann Math Blaise Pascal 17(2):375–399

    Article  MathSciNet  Google Scholar 

  29. de Teresa L (2000) Insensitizing controls for a semilinear heat equation. Commun Partial Differ Equ 25(1–2):39–72

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by the Alexander von Humboldt foundation, under the programme financed by the BMBF entitled “German research Chairs.” The second author is grateful for the facilities provided by the German research Chairs. The third authors was supported by the German Academic Exchange Service (D.A.A.D) under the Scholarship Programme PhD AIMS-Cameroon. The authors would like to express their gratitude to the unknown referees for helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisèle Mophou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mophou, G., Kéré, M. & Njoukoué, L.L.D. Robust hierarchic control for a population dynamics model with missing birth rate. Math. Control Signals Syst. 32, 209–239 (2020). https://doi.org/10.1007/s00498-020-00260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-020-00260-0

Keywords

Mathematics Subject Classification

Navigation