[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Sampled-data output regulation of unstable well-posed infinite-dimensional systems with constant reference and disturbance signals

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We study the sample-data control problem of output tracking and disturbance rejection for unstable well-posed linear infinite-dimensional systems with constant reference and disturbance signals. We obtain a sufficient condition for the existence of finite-dimensional sampled-data controllers that are solutions of this control problem. To this end, we study the problem of output tracking and disturbance rejection for infinite-dimensional discrete-time systems and propose a design method of finite-dimensional controllers by using a solution of the Nevanlinna–Pick interpolation problem with both interior and boundary conditions. We apply our results to systems with state and output delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Araki M, Ito Y, Hagiwara T (1996) Frequency response of sampled-data systems. Automatica 32:483–497

    MathSciNet  MATH  Google Scholar 

  2. Arendt W, Batty CJK, Hieber M, Neubrander F (2001) Vector-valued laplace transforms and cauchy problems. Birkhäuser, Basel

    MATH  Google Scholar 

  3. Balas MJ (1978) Active control of flexible systems. J Optim Theory Appl 25:415–436

    MathSciNet  MATH  Google Scholar 

  4. Ball JA, Gohberg I, Rodman L (1990) Interpolation of rational matrix functions. Birkhäuser, Basel

    MATH  Google Scholar 

  5. Bamieh BA, Pearson JB (1992) A general framework for linear periodic systems with applications to \({\mathscr {H}}_{\infty }\) sampled-data control. IEEE Trans Automat Control 37:418–435

    MathSciNet  MATH  Google Scholar 

  6. Bounit H, Hadd S (2006) Regular linear systems governed by neutral FDEs. J Math Anal Appl 320:836–858

    MathSciNet  MATH  Google Scholar 

  7. Bounit S, Hadd S, Saij R (2018) Error feedback regulation problem for regular linear systems. IMA J Math Control Inform 35:315–339

    MathSciNet  MATH  Google Scholar 

  8. Castillo-Toledo B, Núñez-Pérez E (2003) On the regulator problem for a class of LTI systems with delays. Kybernetika 39:415–432

    MathSciNet  MATH  Google Scholar 

  9. Curtain RF, Weiss G (1989) Well posedness of triples of operators (in the sense of linear systems theory). In: Control and estimation of distributed parameter systems, Birkhäuser, Basel, pp. 41–59

  10. Curtain RF, Zwart HJ (1995) An introduction to infinite-dimensional linear systems theory. Springer, New York

    MATH  Google Scholar 

  11. Engel KJ, Nagel R (2000) One-parameter semigroups for linear evolution equations. Springer, New York

    MATH  Google Scholar 

  12. Francis BA, Wonham WM (1975) The internal model principle for linear multivariable regulators. J Appl Math Optim 2:170–194

    MathSciNet  MATH  Google Scholar 

  13. Fridman E (2003) Output regulation of nonlinear systems with delay. Syst Control Lett 50:81–93

    MathSciNet  MATH  Google Scholar 

  14. Hadd S, Idrissi A (2005) Regular linear systems governed by systems with state, input and output delays. IMA J Math Control Inform 22:423–439

    MathSciNet  MATH  Google Scholar 

  15. Hagiwara T, Araki M (1995) FR-operator approach to the \(H_2\) analysis and synthesis of sampled-data systems. IEEE Trans Automat Control 40:1411–1421

    MathSciNet  MATH  Google Scholar 

  16. Hämäläinen T, Pohjolainen S (2000) A finite-dimensional robust controller for systems in the CD-algebra. IEEE Trans Automat Control 45:421–431

    MathSciNet  MATH  Google Scholar 

  17. Hara S, Yamamoto Y, Omata T, Nakano M (1988) Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Trans Automat Control 33:659–668

    MathSciNet  MATH  Google Scholar 

  18. Ke Z, Logemann H, Rebarber R (2009) Approximate tracking and disturbance rejection for stable infinite-dimensional systems using sampled-data low-gain control. SIAM J Control Optim 48:641–671

    MathSciNet  MATH  Google Scholar 

  19. Ke Z, Logemann H, Rebarber R (2009) A sampled-data servomechanism for stable well-posed systems. IEEE Trans Automat Control 54:1123–1128

    MathSciNet  MATH  Google Scholar 

  20. Ke Z, Logemann H, Townley S (2009) Adaptive sampled-data integral control of stable infinite-dimensional linear systems. Syst Control Lett 58:233–240

    MathSciNet  MATH  Google Scholar 

  21. Kimura H (1987) Directional interpolation approach to \(H^{\infty }\)-optimization and robust stabilization. IEEE Trans Automat Control 32:1085–1093

    MathSciNet  MATH  Google Scholar 

  22. Laakkonen P (2016) Robust regulation theory for transfer functions with a coprime factorization. IEEE Trans Automat Control 61:3109–3114

    MathSciNet  MATH  Google Scholar 

  23. Laakkonen P, Pohjolainen S (2015) Frequency domain robust regulation of signals generated by an infinite-dimensional exosystem. SIAM J Control Optim 2015:139–166

    MathSciNet  MATH  Google Scholar 

  24. Logemann H (1992) Stability and stabilizability of linear infinite-dimensional discrete-time systems. IMA J Math Control Inform 9:255–263

    MathSciNet  MATH  Google Scholar 

  25. Logemann H (2013) Stabilization of well-posed infinite-dimensional systems by dynamic sampled-data feedback. SIAM J Control Optim 51:1203–1231

    MathSciNet  MATH  Google Scholar 

  26. Logemann H, Rebarber R, Townley S (2003) Stability of infinite-dimensional sampled-data systems. Trans Am Math Soc 355:3301–3328

    MathSciNet  MATH  Google Scholar 

  27. Logemann H, Rebarber R, Townley S (2005) Generalized sampled-data stabilization of well-posed linear infinite-dimensional systems. SIAM J Control Optim 44:1345–1369

    MathSciNet  MATH  Google Scholar 

  28. Logemann H, Townley S (1997) Discrete-time low-gain control of uncertain infinite-dimensional systems. IEEE Trans Automat Control 42:22–37

    MathSciNet  MATH  Google Scholar 

  29. Logemann H, Townley S (1997) Low-gain control of uncertain regular linear systems. SIAM J Control Optim 35:78–116

    MathSciNet  MATH  Google Scholar 

  30. Luxemburg LA, Brown PR (2011) The scalar Nevanlinna–Pick interpolation problem with boundary conditions. J Comput Appl Math 235:2615–2625

    MathSciNet  MATH  Google Scholar 

  31. Paunonen L (2016) Controller design for robust output regulation of regular linear systems. IEEE Trans Automat Control 61:2974–2986

    MathSciNet  MATH  Google Scholar 

  32. Paunonen L (2017) Output regulation of infinite-dimensional time-delay systems. In: Proceedings of the ACC’17

  33. Paunonen L (2017) Robust controllers for regular linear systems with infinite-dimensional exosystems. SIAM J Control Optim 55:1567–1597

    MathSciNet  MATH  Google Scholar 

  34. Paunonen L (2017) Robust output regulation for continuous-time periodic systems. IEEE Trans Automat Control 62:4363–4375

    MathSciNet  MATH  Google Scholar 

  35. Paunonen L, Pohjolainen S (2010) Internal model theory for distributed parameter systems. SIAM J Control Optim 48:4753–4775

    MathSciNet  MATH  Google Scholar 

  36. Paunonen L, Pohjolainen S (2014) The internal model principle for systems with unbounded control and observation. SIAM J Control Optim 52:3967–4000

    MathSciNet  MATH  Google Scholar 

  37. Rebarber R, Townley S (1998) Generalized sampled data feedback control of distributed parameter systems. Syst Control Lett 34:229–240

    MathSciNet  MATH  Google Scholar 

  38. Rebarber R, Townley S (2002) Nonrobustness of closed-loop stability for infinite-dimensional systems under sample and hold. IEEE Trans Automat Control 47:1381–1385

    MathSciNet  MATH  Google Scholar 

  39. Rebarber R, Townley S (2006) Robustness with respect to sampling for stabilization of Riesz spectral systems. IEEE Trans Automat Control 51:1519–1522

    MathSciNet  MATH  Google Scholar 

  40. Rebarber R, Weiss G (2003) Internal model based tracking and disturbance rejection for stable well-posed systems. IEEE Trans Automat Control 39:1555–1569

    MathSciNet  MATH  Google Scholar 

  41. Rudin W (1987) Real and complex analysis. McGrawHill, Singapore

    MATH  Google Scholar 

  42. Sakawa Y (1983) Feedback stabilization of linear diffusion systems. SIAM J Control Optim 21:667–676

    MathSciNet  MATH  Google Scholar 

  43. Selivanov A, Fridman E (2017) Sampled-data relay control of diffusion PDEs. Automatica 82:59–68

    MathSciNet  MATH  Google Scholar 

  44. Staffans OJ (2005) Well-posed linear systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  45. Tucsnak M, Weiss G (2014) Well-posed systems-the LTI case and beyond. Automatica 50:1757–1779

    MathSciNet  MATH  Google Scholar 

  46. Ukai H, Iwazumi T (1990) Design of servo systems for distributed parameter systems by finite dimensional dynamic compensator. Int J Syst Sci 21:1025–1046

    MathSciNet  MATH  Google Scholar 

  47. Vidyasagar M (2011) Control system synthesis: a factorization approach. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  48. Wakaiki M, Yamamoto Y, Özbay H (2012) Sensitivity reduction by strongly stabilizing controllers for MIMO distributed parameter systems. IEEE Trans Automat Control 57:2089–2094

    MathSciNet  MATH  Google Scholar 

  49. Wakaiki M, Yamamoto Y, Özbay H (2014) Sensitivity reduction by stable controllers for MIMO infinite dimensional systems via the tangential Nevanlinna-Pick interpolation. IEEE Trans Automat Control 59:1099–1105

    MathSciNet  MATH  Google Scholar 

  50. Weiss G, Staffans OJ, Tucsnak M (2001) Well-posed linear systems-a survey with emphasis on conservative systems. Appl Math Comput Sci 11:101–127

    MathSciNet  MATH  Google Scholar 

  51. Xu C, Feng D (2004) Robust integral stabilization of regular linear systems. Sci China Ser F Inf Sci 47:545–554

    MathSciNet  MATH  Google Scholar 

  52. Yamamoto Y (1994) A function space approach to sampled data control systems and tracking problems. IEEE Trans Automat Control 39:703–713

    MathSciNet  MATH  Google Scholar 

  53. Yamamoto Y, Hara S (1988) Relationships between internal and external stability for infinite-dimensional systems with applications to a servo problem. IEEE Trans Automat Control 33:1044–1052

    MathSciNet  MATH  Google Scholar 

  54. Yamamoto Y, Khargonekar PP (1996) Frequency response of sampled-data systems. IEEE Trans Automat Control 41:166–176

    MathSciNet  MATH  Google Scholar 

  55. Yoon SY, Lin Z (2016) Robust output regulation of linear time-delay systems: a state predictor approach. Int J Robust Nonlinear Control 26:1686–1704

    MathSciNet  MATH  Google Scholar 

  56. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice Hall, New York

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Lassi Paunonen for helpful advice on robust output regulation for infinite-dimensional discrete-time systems. Furthermore, we would like to thank the anonymous reviewers for their careful reading of our manuscript and many insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Wakaiki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by JSPS KAKENHI Grant Numbers JP17K14699.

Appendices

A Nevanlinna–Pick interpolation problem

In this section, we obtain a necessary and sufficient condition for the solvability of the interpolation problem to which we reduce the design problem of regulating controllers. In the process, we also show how to construct a solution of the interpolation problem. Although we consider \(H^{\infty }({\mathbb {E}}_1,{\mathbb {C}}^{p \times q})\) in Sect. 2, the standard theory of the Nevanlinna–Pick interpolation problem uses \(H^{\infty }({\mathbb {D}},{\mathbb {C}}^{p \times q})\). Hence, it is convenient to map \({\mathbb {E}}_1\) to \({\mathbb {D}}\) via the bilinear transformation \(\varphi : {\mathbb {E}}_1 \rightarrow {\mathbb {D}}:z \mapsto 1/z\).

In Sect. A.1, we recall basic facts on the Nevanlinna–Pick interpolation problem only with conditions on the interior \({\mathbb {D}}\). Section A.2 is devoted to solving the Nevanlinna–Pick interpolation problem with conditions on both the interior \({\mathbb {D}}\) and the boundary \({\mathbb {T}}\). As in [30, 48], we transform this problem into the Nevanlinna–Pick interpolation problem only with conditions on the boundary \({\mathbb {T}}\), which is always solvable.

1.1 A.1 Interpolation problem only with interior conditions

First we consider interpolation problems only with interior interpolation conditions.

Problem A.1

(Chapter 18 in [4], Section II in [21]) Suppose that \(\alpha _1,\dots ,\alpha _n \in {\mathbb {D}}\) are distinct. Let vector pairs \((\xi _\ell , \eta _\ell )\in {\mathbb {C}}^p \times {\mathbb {C}}^q\) satisfy

$$\begin{aligned} \Vert \xi _\ell \Vert _{{\mathbb {C}}^p} > \Vert \eta _\ell \Vert _{{\mathbb {C}}^q} \qquad \forall \ell \in \{1,\dots , n\}. \end{aligned}$$
(A.1)

Find \(\varPhi \in H^{\infty }({\mathbb {D}}, {\mathbb {C}}^{p\times q})\) such that \(\Vert \varPhi \Vert _{H^{\infty }({\mathbb {D}})} < 1\) and

$$\begin{aligned} \xi _\ell ^* \varPhi (\alpha _\ell )&= \eta _\ell ^*\qquad \forall \ell \in \{1,\dots , n\}. \end{aligned}$$

We call this problem the Nevanlinna–Pick interpolation problem with n interpolation data \((\alpha _\ell , \xi _\ell ,\eta _\ell )_{\ell =1}^n\). The solvability of Problem A.1can be characterized by the so-called Pick matrix.

Theorem A.2

(Theorem 18.2.3 in [4], Theorem 2 in [21]) Consider Problem A.1. Define the Pick matrix P by

$$\begin{aligned} P := \begin{bmatrix} P_{1,1}&\cdots&P_{1,n} \\ \vdots&\vdots \\ P_{n,1}&\cdots&P_{n,n} \end{bmatrix}, \quad \text {where } P_{j,\ell } := \frac{\xi _j^*\xi _\ell - \eta _j^*\eta _\ell }{1-\alpha _j{\bar{\alpha }}_\ell }\quad \forall j,\ell \in \{1,\dots ,n\}. \end{aligned}$$

Problem A.1 is solvable if and only if P is positive definite.

Let us next introduce an algorithm to construct a solution of Problem A.1. To this end, define

$$\begin{aligned} {\mathcal {B}} := \{E \in {\mathbb {C}}^{p \times q} : \Vert E\Vert _{{\mathbb {C}}^{p\times q}} < 1 \}. \end{aligned}$$

Let \(I_p\) and \(I_q\) be the identity matrix with dimension p and q, respectively. For a matrix \(E \in {\mathcal {B}}\), define

$$\begin{aligned} A(E)&:= (I_p-EE^*)^{-1/2},\quad B(E) := -(I_p-EE^*)^{-1/2}E \end{aligned}$$
(A.2a)
$$\begin{aligned} C(E)&:= -(I_q-E^*E)^{-1/2}E^*,\quad D(E) := (I_q-E^*E)^{-1/2}, \end{aligned}$$
(A.2b)

where \(M^{-1/2}\) denotes the inverse of the Hermitian square root of a positive definite matrix M. Define the maps \( U_E\) and \(V_E\) by

$$\begin{aligned} U_E&:{\mathbb {C}}^{p} \times {\mathbb {C}}^{q} \rightarrow {\mathbb {C}}^{p}: (\xi ,\eta ) \mapsto A(E)\xi + B(E)\eta \\ V_E&:{\mathbb {C}}^{p} \times {\mathbb {C}}^{q} \rightarrow {\mathbb {C}}^{q}: (\xi ,\eta ) \mapsto C(E)\xi + D(E)\eta . \end{aligned}$$

The mapping \(T_E\) in the lemma below is useful for solving Problem A.1.

Lemma A.3

(Lemma 6.5.10 in [47]) For a matrix \(E \in {\mathcal {B}}\), define the matrices A(E), B(E), C(E), and D(E) by (A.2). The mapping

$$\begin{aligned} T_E:{\mathcal {B}} \rightarrow {\mathcal {B}}:X \mapsto \big (A(E)X+B(E)\big ) \big (C(E)X+D(E)\big )^{-1} \end{aligned}$$
(A.3)

is well defined and bijective.

A routine calculation shows that the inverse of \(T_E\) is given by

$$\begin{aligned} T_E^{-1}(Y)&= \big (A(E)-YC(E)\big )^{-1} \big (YD(E)-B(E)\big ) \nonumber \\&= \big (A(E)Y-B(E)\big ) \big (\!-C(E)Y+D(E)\big )^{-1}. \end{aligned}$$
(A.4)

Lemma A.4

(Lemma 1 in [21]) Consider Problem A.1 with n interpolation data \((\alpha _\ell , \xi _\ell ,\eta _\ell )_{\ell =1}^n\). Set \(E := \xi _1 \eta _1^*/\Vert \xi _1\Vert ^2_{{\mathbb {C}}^p} \) and define A(E), B(E), C(E), and D(E) as in (A.2). Define also \(\nu := U_E(\xi _1,\eta _1)\) and

$$\begin{aligned} \kappa (z)&:= {\left\{ \begin{array}{ll} \frac{|\alpha _1|}{\alpha _1}\frac{z- \alpha _1}{1-{\bar{\alpha }}_1 z} &{} \text {if } \alpha _1 \not = 0 \\ z &{} \text {if } \alpha _1 = 0 \end{array}\right. },\quad X := I_p + (\kappa -1)\frac{\nu \nu ^*}{\Vert \nu \Vert ^2_{{\mathbb {C}}^p} }. \end{aligned}$$
(A.5)

Problem A.1 with n interpolation data \((\alpha _\ell , \xi _\ell ,\eta _\ell )_{\ell =1}^n\) is solvable if and only if Problem A.1 with \(n-1\) interpolation data

$$\begin{aligned} \big (\alpha _\ell , X(\alpha _\ell )^*U_E(\xi _\ell ,\eta _\ell ),V_E(\xi _\ell ,\eta _\ell )\big )_{\ell =2}^n \end{aligned}$$
(A.6)

is solvable. Moreover, if \(\varPhi _{n-1}\) is a solution of the problem with \(n-1\) interpolation data given in (A.6), then

$$\begin{aligned} \varPhi _n := T_{-E}\left( X \varPhi _{n-1}\right) = \big (A(E)X \varPhi _{n-1}-B(E)\big ) \big (\!-C(E)X \varPhi _{n-1}+D(E)\big )^{-1} \end{aligned}$$
(A.7)

is a solution \(\varPhi _n\) of the original problem with n interpolation data \((\alpha _\ell , \xi _\ell ,\eta _\ell )_{\ell =1}^n\).

The iterative algorithm derived from Lemma A.4 is called the Schur–Nevanlinna algorithm. Lemma A.4 also shows that if the problem is solvable, then there exist always solutions whose elements are rational functions.

Note that \(\nu \) given in Lemma A.4 is nonzero. In fact, since \( \Vert \xi _1\Vert _{{\mathbb {C}}^p} > \Vert \eta _1\Vert _{{\mathbb {C}}^q} , \) it follows that

$$\begin{aligned} A(E)^{-1}\nu = \xi _1 - E \eta _1 = \xi _1 - \frac{\Vert \eta _1\Vert _{{\mathbb {C}}^q}^2}{\Vert \xi _1\Vert _{{\mathbb {C}}^p}^2} \xi _1 \not = 0, \end{aligned}$$

and hence \(\nu \not = 0\). Furthermore, the matrix X defined by (A.5) satisfies \(X(\lambda )^{-1} = X(\lambda )^*\) for all \(\lambda \in {\mathbb {T}}\) and \(\Vert X(z)\Vert _{{\mathbb {C}}^{p\times p}} < 1\) for all \(z \in {\mathbb {D}}\).

1.2 A.2 Interpolation problem with both interior and boundary conditions

We next study interpolation problems with both interior and boundary conditions.

Problem A.5

Suppose that \(\alpha _1,\dots ,\alpha _n \in {\mathbb {D}}\) and \(\lambda _1,\dots ,\lambda _m \in {\mathbb {T}}\) are distinct. Consider vector pairs \((\xi _\ell , \eta _\ell )\in {\mathbb {C}}^p \times {\mathbb {C}}^q\) for \( \ell \in \{1,\dots , n\}\) and matrices \(F_j,G_j \in {\mathbb {C}}^{p\times q}\) for \(j\in \{1,\dots , m\}\), and suppose that

$$\begin{aligned} \Vert \xi _\ell \Vert _{{\mathbb {C}}^p}&> \Vert \eta _\ell \Vert _{{\mathbb {C}}^q}\qquad \forall \ell \in \{1,\dots , n\} \end{aligned}$$
(A.8a)
$$\begin{aligned} \Vert F_j\Vert _{{\mathbb {C}}^{p\times q}}&< 1 \qquad \forall j\in \{1,\dots , m\}. \end{aligned}$$
(A.8b)

Find a rational function \(\varPhi \in H^{\infty }({\mathbb {D}}, {\mathbb {C}}^{p\times q})\) such that \(\Vert \varPhi \Vert _{H^{\infty }({\mathbb {D}})} < 1\) and

$$\begin{aligned} \xi _\ell ^* \varPhi (\alpha _\ell )&= \eta _\ell ^*\qquad \forall \ell \in \{1,\dots , n\} \end{aligned}$$
(A.9a)
$$\begin{aligned} \varPhi (\lambda _j)&= F_j,\quad \varPhi ^{\prime }(\lambda _j) = G_j \qquad \forall j \in \{1,\dots , m\}. \end{aligned}$$
(A.9b)

Problem A.5 is called the Nevanlinna–Pick interpolation problem with interior interpolation data \((\alpha _\ell , \xi _\ell ,\eta _\ell )_{\ell =1}^n\) and boundary interpolation data \( (\lambda _j,F_j,G_j)_{j=1}^m\). The scalar-valued case \(p=q=1\) with more general interpolation conditions has been studied in [30].

The following theorem implies that the solvability of Problem A.5 depends only on its interior interpolation data.

Theorem A.6

Problem A.5 with interior interpolation data \((\alpha _\ell , \xi _\ell ,\eta _\ell )_{\ell =1}^n\) and boundary interpolation data \((\lambda _j,F_j,G_j)_{j=1}^m\) is solvable if and only if Problem A.1 with interpolation data \((\alpha _\ell ,\xi _\ell ,\eta _\ell )_{\ell =1}^n\) is solvable.

To solve Problem A.5, we transform it to the following problem with boundary conditions only:

Problem A.7

Suppose that \(\lambda _1 ,\dots ,\lambda _m \in {\mathbb {T}}\) are distinct. Consider matrices \(F_j,G_j \in {\mathbb {C}}^{p\times q}\) for \(j\in \{1,\dots , m\}\), and suppose that

$$\begin{aligned} \Vert F_j\Vert _{{\mathbb {C}}^{p\times q}} < 1 \qquad \forall j\in \{1,\dots , m\}. \end{aligned}$$
(A.10)

Find a rational function \(\varPhi \in H^{\infty }({\mathbb {D}}, {\mathbb {C}}^{p\times q})\) such that \(\Vert \varPhi \Vert _{H^{\infty }({\mathbb {D}})} < 1\) and

$$\begin{aligned} \varPhi (\lambda _j)&= F_j,\quad \varPhi ^{\prime }(\lambda _j) = G_j \qquad \forall j \in \{1,\dots , m\}. \end{aligned}$$

This problem is referred to as the boundary Nevanlinna–Pick interpolation problem with interpolation data \((\lambda _j,F_j,G_j)_{j=1}^m\). The condition (A.10) is necessary for the solvability for Problem A.7, and the lemma below shows that the condition (A.10) is also sufficient. We can prove the sufficiency by extending the Schur–Nevanlinna algorithm in Lemma A.4.

Lemma A.8

Problem A.7 is always solvable.

Proof

Consider Problem A.7 with interpolation data \((\lambda _j,F_j,G_j)_{j=1}^m\). We first find \(m-1\) interpolation data such that if Problem A.7 with these \(m-1\) data is solvable, then the original problem with m interpolation data \( (\lambda _j,F_j,G_j)_{j=1}^m \) is also solvable. To that purpose, we extend the technique developed in [30] for the scalar-valued case.

Define \(A:= A(F_1)\), \(B:= B(F_1)\), \(C:= C(F_1)\), and \(D:= D(F_1)\) as in (A.2). For \(\epsilon >0\), set

$$\begin{aligned} \kappa _{\epsilon }(z)&:= \frac{1}{\lambda _1}\frac{z-\lambda _1}{(1+\epsilon )-\bar{\lambda }_1 z} \\ {\widehat{F}}_1&:= \epsilon \lambda _1(I_p-F_1F_1^*)^{-1/2} G_1 (I_q-F_1^*F_1)^{-1/2} \end{aligned}$$

and

$$\begin{aligned} {\widehat{F}}_j&:= \frac{1}{\kappa _{\epsilon }(\lambda _j)}T_{F_1}(F_j) \\ {\widehat{G}}_j&:= \frac{1}{\kappa _{\epsilon }(\lambda _j)} (A-\kappa _\epsilon (\lambda _j){\widehat{F}}_j C) G_j (CF_j +D)^{-1} - \frac{\kappa ^{\prime }_{\epsilon }(\lambda _j)}{\kappa _{\epsilon }(\lambda _j)} {\widehat{F}}_j \end{aligned}$$

for \(j \in \{2,\dots ,m\}\). Let us show that there exists \(\epsilon >0\) such that

$$\begin{aligned} \Vert {\widehat{F}}_j\Vert _{{\mathbb {C}}^{p\times q}}<1\qquad \forall j \in \{1,\dots ,m \}. \end{aligned}$$
(A.11)

By definition,

$$\begin{aligned} \Vert {\widehat{F}}_1\Vert _{{\mathbb {C}}^{p\times q}} \le \epsilon \Vert G_1\Vert _{{\mathbb {C}}^{p\times q}} \cdot \big \Vert (I_p-F_1F_1^*)^{-1/2} \big \Vert _{{\mathbb {C}}^{p\times p}} \cdot \big \Vert (I_q-F_1^*F_1)^{-1/2} \big \Vert _{{\mathbb {C}}^{q\times q}}, \end{aligned}$$

and hence if

$$\begin{aligned} \epsilon < \frac{1}{\Vert G_1\Vert _{{\mathbb {C}}^{p\times q}} \cdot \big \Vert (I_p-F_1F_1^*)^{-1/2}\big \Vert _{{\mathbb {C}}^{p\times p}} \cdot \big \Vert (I_q-F_1^*F_1)^{-1/2} \big \Vert _{{\mathbb {C}}^{q\times q}}}, \end{aligned}$$
(A.12)

then \(\Vert {\widehat{F}}_1\Vert _{{\mathbb {C}}^{p\times q}} < 1\). Let \(j \in \{2,\dots ,m \}\) be given. We obtain

$$\begin{aligned} \Vert {\widehat{F}}_j \Vert _{{\mathbb {C}}^{p\times q}} \le \left( 1+ \frac{\epsilon }{| \lambda _j - \lambda _1|} \right) \Vert T_{F_1}(F_j)\Vert _{{\mathbb {C}}^{p\times q}}. \end{aligned}$$
(A.13)

Since \(F_j \in {\mathcal {B}}\), it follows that \(\Vert T_{F_1}(F_j)\Vert _{{\mathbb {C}}^{p\times q}} < 1\) by Lemma A.3. If we choose \(\epsilon > 0\) so that

$$\begin{aligned} \epsilon < \min _{j=2,\dots ,m} \left( |\lambda _j - \lambda _1| \left( \frac{1}{\Vert T_{F_1}(F_j)\Vert _{{\mathbb {C}}^{p\times q}} } - 1 \right) \right) , \end{aligned}$$
(A.14)

then \(\Vert {\widehat{F}}_j\Vert _{{\mathbb {C}}^{p\times q}} < 1\) for every \(j \in \{2,\dots ,m \}\). Thus, we obtain the desired inequality (A.11) for \(\epsilon >0\) satisfying (A.12) and (A.14).

Assume that there exists a rational solution \(\varPsi _{m-1} \in H^{\infty }({\mathbb {D}}, {\mathbb {C}}^{p\times q})\) such that

$$\begin{aligned}&\Vert \varPhi _{m-1}\Vert _{H^{\infty }({\mathbb {D}})}<1 \end{aligned}$$
(A.15a)
$$\begin{aligned}&\varPsi _{m-1} (\lambda _j) = {\widehat{F}}_j\qquad \forall j \in \{1,\dots ,m \} \end{aligned}$$
(A.15b)
$$\begin{aligned}&\varPsi _{m-1} ^{\prime }(\lambda _j) = {\widehat{G}}_j\qquad \forall j \in \{2,\dots ,m\} \end{aligned}$$
(A.15c)

We shall show that \( \varPsi _{m} := T_{F_1}^{-1}(\kappa _{\epsilon }\varPsi _{m-1}) \) is a solution of the original problem with m interpolation data \((\lambda _j, F_j,G_j)_{j=1}^m\). By definition, \(\varPsi _m\) is rational. Since \(\Vert \kappa _{\epsilon }\Vert _{H^{\infty }({\mathbb {D}})} < 1\) and \(\Vert \varPsi _{m-1}\Vert _{H^{\infty }({\mathbb {D}})} < 1\), it follows that

$$\begin{aligned} \kappa _{\epsilon }(z)\varPsi _{m-1}(z) \in {\mathcal {B}}\qquad \forall z \in \mathrm{cl}({\mathbb {D}}). \end{aligned}$$

Together with this, Lemma A.3 yields \(\varPsi _m \in H^{\infty }({\mathbb {D}}, {\mathbb {C}}^{p\times q})\) and \(\Vert \varPsi _m\Vert _{H^{\infty }({\mathbb {D}})}<1\).

We now prove that \(\varPsi _m\) satisfies the interpolation conditions \(\varPsi _m(\lambda _j) = F_j\) and \(\varPsi _m'(\lambda _j) = G_j\) for every \(j \in \{ 1,\dots ,m\}\). For the case \(j=1\), \(\kappa _{\epsilon }(\lambda _1) = 0\) yields

$$\begin{aligned} \varPsi _m (\lambda _1) = T_{F_1}^{-1}\big (\kappa _{\epsilon }(\lambda _1)\varPsi _{m-1}(\lambda _1)\big ) =F_1. \end{aligned}$$

By (A.4), we obtain

$$\begin{aligned} (A- \kappa _{\epsilon }\varPsi _{m-1}C ) \varPsi _m = \kappa _{\epsilon } \varPsi _{m-1}D-B, \end{aligned}$$

which implies

$$\begin{aligned} (\kappa _{\epsilon } \varPsi _{m-1}^{\prime }+ \kappa _{\epsilon }^{\prime }\varPsi _{m-1}) (C\varPsi _m+D)= (A-\kappa _{\epsilon } \varPsi _{m-1} C)\varPsi _m^{\prime }. \end{aligned}$$
(A.16)

Therefore,

$$\begin{aligned} \varPsi _m^{\prime }(\lambda _1) = \kappa _{\epsilon }^{\prime }(\lambda _1) A^{-1} {\widehat{F}}_1(CF_1+D). \end{aligned}$$

Since

$$\begin{aligned} \kappa _{\epsilon }^{\prime }(z) = \frac{1}{\lambda _1} \frac{\epsilon }{\big ((1+\epsilon ) - \bar{\lambda }_1 z \big )^2}, \end{aligned}$$

it follows that \(\kappa _{\epsilon }^{\prime }(\lambda _1) = 1/(\epsilon \lambda _1 )\). Using

$$\begin{aligned} A^{-1} = (I_p-F_1F_1^*)^{1/2},\quad CF_1+D = (I_q-F_1^*F_1)^{1/2}, \end{aligned}$$

we derive \( \varPsi ^{\prime }_m(\lambda _1) = G_1. \)

For \(j\in \{2,\dots ,m\}\), we have by the definition of \({\widehat{F}}_j\) that

$$\begin{aligned} \varPsi _m(\lambda _j) = T_{F_1}^{-1}(\kappa _{\epsilon }(\lambda _j){\widehat{F}}_j) = T_{F_1}^{-1}\big (T_{F_1}(F_j)\big ) = F_j. \end{aligned}$$

Using (A.16) again, we obtain

$$\begin{aligned} \kappa _{\epsilon }(\lambda _j) {\widehat{G}}_j+ \kappa _{\epsilon }^{\prime }(\lambda _j) {\widehat{F}}_j = (A - \kappa _{\epsilon }(\lambda _j) {\widehat{F}}_j C) \varPsi _m^{\prime }(\lambda _j) (CF_j +D)^{-1}. \end{aligned}$$

By the definition of \({\widehat{G}}_j\), we find that

$$\begin{aligned} \varPsi _m^{\prime }(\lambda _j) = G_j\qquad \forall j \in \{2,\dots ,m \}. \end{aligned}$$

Thus \(\varPhi _m\) is a solution of the original problem with m interpolation conditions.

If we apply this procedure again to the resulting interpolation problem, i.e., the problem of finding a rational solution \(\varPsi _{m-1} \in H^{\infty }({\mathbb {D}}, {\mathbb {C}}^{p\times q})\) such that the conditions given in (A.15) hold, then the interpolation condition at \(z = \lambda _1\) is removed. Therefore, Problem A.7 with m interpolation data can be reduced to Problem A.7 with \(m-1\) interpolation data. Continuing in this way, we finally obtain Problem A.7 with no interpolation conditions, which always admits a solution. Thus Problem A.7 is always solvable. \(\square \)

By Lemmas A.4 and A.8, we obtain a proof of Theorem A.6.

Proof of Theorem A.6

The necessity is straightforward. We prove the sufficiency. To this end, it is enough to show that the following problem always has a solution:

Problem A.9

Assume that Problem A.1 with n interior interpolation data \((\alpha _\ell ,\xi _\ell ,\eta _\ell )_{\ell =1}^n\) is solvable and that \(\Vert F_j\Vert _{{\mathbb {C}}^{p \times q}} < 1\) for every \(j \in \{1,\dots ,m \}\). Find a solution of Problem A.5 with n interior interpolation data \((\alpha _\ell ,\xi _\ell ,\eta _\ell )_{\ell =1}^n\) and m boundary interpolation data \((\lambda _j, F_j, G_j)_{j=1}^m\).

Suppose that Problem A.1 with n interior interpolation data \((\alpha _\ell ,\xi _\ell ,\eta _\ell )_{\ell =1}^n\) is solvable. Define the matrix E and the function X as in Lemma A.4. Then this lemma shows that Problem A.1 with \(n-1\) interior interpolation data

$$\begin{aligned} \big (\alpha _\ell ,X(\alpha _\ell )^*U_E(\xi _\ell ,\eta _\ell ),V_E(\xi _\ell ,\eta _\ell )\big )_{\ell =2}^n \end{aligned}$$
(A.17)

is solvable. Set \(A:= A(E)\), \(B:= B(E)\), \(C:= C(E)\), and \(D:= D(E)\) as in (A.2). For \(j \in \{1,\dots ,m\}\), define also

$$\begin{aligned} {\widehat{F}}_j&:= X(\lambda _j)^{-1} T_{-E}^{-1}(F_j) \\ {\widehat{G}}_j&:= X(\lambda _j)^{-1} (A+F_jC)^{-1}G_j(-CX(\lambda _j){\widehat{F}}_j + D) - X(\lambda _j)^{-1} X^{\prime }(\lambda _j){\widehat{F}}_j. \end{aligned}$$

Since \(X(\lambda _j)^{-1} = X(\lambda _j)^*\) for every \(j \in \{1,\dots ,m \}\), we obtain \(\Vert X(\lambda _j)^{-1}\Vert _{{\mathbb {C}}^{p\times p}} = 1\) and hence \(\Vert {\widehat{F}}_j\Vert _{{\mathbb {C}}^{p\times p}} < 1\) for every \(j \in \{1,\dots ,m \}\). Suppose that \(\varPhi _{n-1}\) is a solution of Problem A.5 with \(n-1\) interior interpolation data given in (A.17) and m boundary interpolation data \( (\lambda _j, {\widehat{F}}_j, {\widehat{G}}_j)_{j=1}^m. \) Then \( \varPhi _n := T_{-E}(X \varPhi _{n-1}) \) is a solution of Problem A.5 with n interior interpolation data \((\alpha _\ell ,\xi _\ell ,\eta _\ell )_{\ell =1}^n\) and m boundary interpolation data \((\lambda _j, F_j, G_j)_{j=1}^m\). In fact, Lemma A.4 shows that \(\varPhi _n\) satisfies \(\Vert \varPhi _n\Vert _{H^{\infty }({\mathbb {D}})} < 1\) and \(\xi _{\ell }^* \varPhi _n(\alpha _\ell ) = \eta _\ell ^*\) for every \(\ell \in \{1,\dots ,n\}\). It remains to show that the boundary conditions hold. We obtain

$$\begin{aligned} \varPhi _n(\lambda _j) = T_{-E}\big (X(\lambda _j) {\widehat{F}}_j \big ) = T_{-E}\big (T_{-E}^{-1}(F_j) \big ) =F_j\qquad \forall j \in \{1,\dots ,m \}. \end{aligned}$$

By the definition of \(T_{-E}\), we obtain

$$\begin{aligned} \varPhi _n(-CX\varPhi _{n-1}+D) = (AX\varPhi _{n-1}-B), \end{aligned}$$

and hence

$$\begin{aligned} \varPhi _n^{\prime } (-CX \varPhi _{n-1}+D) = (A+\varPhi _nC)(X\varPhi _{n-1})^{\prime }. \end{aligned}$$

This yields

$$\begin{aligned} \varPhi _n^{\prime }(\lambda _j) = (A+F_jC)(X(\lambda _j) {\widehat{G}}_j + X^{\prime }(\lambda _j) {\widehat{F}}_j) (-CX(\lambda _j) {\widehat{F}}_j +D)^{-1} = G_j. \end{aligned}$$

Thus, we can reduce Problem A.9 with n interior data to that with \(n-1\) interior data. Continuing in this way, we reduce Problem A.5 to Problem A.7, which is always solvable by Lemma A.8. This completes the proof. \(\square \)

In the construction of regulating controllers in Sect. 2, a rational function \({\mathbf {Y}}_+\in H^{\infty }({\mathbb {E}}_1,{\mathbb {C}}^{p \times p})\) needs to satisfy the interpolation condition \({\mathbf {Y}}_+(\infty ) = 0\). Its counterpart in \(H^{\infty }({\mathbb {D}},{\mathbb {C}}^{p \times p})\) under the transformation \(\varphi : {\mathbb {E}}_1 \rightarrow {\mathbb {D}}:z \mapsto 1/z\) is given by the interpolation condition \(({\mathbf {Y}}_+\circ \varphi ^{-1} )(0) = 0\). Such a condition is excluded in Problem A.5, but we can easily incorporate it into the problem.

Corollary A.10

Suppose that \(\alpha _1,\dots ,\alpha _n \in {\mathbb {D}}{\setminus } \{0\}\) and \(\lambda _1,\dots ,\lambda _m \in {\mathbb {T}}\) are distinct. Consider vector pairs \((\xi _\ell , \eta _\ell )\in {\mathbb {C}}^p \times {\mathbb {C}}^q\) for \( \ell \in \{1,\dots , n\}\) and matrices \(F_j,G_j \in {\mathbb {C}}^{p\times q}\) for \(j\in \{1,\dots , m\}\), and suppose that the norm conditions (A.8) are satisfied. Then the following three statements are equivalent:

  1. (a)

    There exists a rational function \(\varPhi \in H^{\infty }({\mathbb {D}}, {\mathbb {C}}^{p\times q})\) such that \(\Vert \varPhi \Vert _{H^{\infty }({\mathbb {D}})} < 1\), \(\varPhi (0) = 0\), and the interpolation conditions (A.9a) and (A.9b) hold.

  2. (b)

    There exists a rational function \(\varPhi \in H^{\infty }({\mathbb {D}}, {\mathbb {C}}^{p\times q})\) such that \(\Vert \varPhi \Vert _{H^{\infty }({\mathbb {D}})} < 1\), \(\varPhi (0) = 0\), and the interpolation conditions (A.9a) hold.

  3. (c)

    The Pick matrix P defined by

    $$\begin{aligned} P := \begin{bmatrix} P_{1,1}&\cdots&P_{1,n} \\ \vdots&\vdots \\ P_{n,1}&\cdots&P_{n,n} \end{bmatrix}, ~~ \text {where } P_{j,k} := \frac{\alpha _j \bar{\alpha }_\ell \xi _j^*\xi _\ell - \eta _j^*\eta _\ell }{1- \alpha _j\bar{\alpha }_\ell } ~~ \forall j,\ell \in \{1,\dots ,n\} \end{aligned}$$

    is positive definite.

Proof

By a straightforward calculation, we have the following fact: A rational function \(\varPhi \in H^{\infty }({\mathbb {D}}, {\mathbb {C}}^{p\times q})\) satisfies the conditions of (a) if and only if \({\widehat{\varPhi }}(z) := \varPhi (z)/z\) is a solution of Problem A.5 with interior interpolation data \((\alpha _\ell , {\bar{\alpha }}_\ell \xi _\ell , \eta _\ell )_{\ell =1}^n\) and boundary interpolation data \((\lambda _j, F_j/\lambda _j, G_j/\lambda _j - F_j/\lambda _j^2)_{j=1}^m\). This fact together with Theorem A.6 shows that (a) is true if and only if Problem A.1 with interpolation data \((\alpha _\ell , \bar{\alpha }_\ell \xi _\ell , \eta _\ell )_{\ell =1}^n\) is solvable. Hence, we obtain (a) \(\Leftrightarrow \) (c) by Theorem A.2. Using the fact mentioned above again, we obtain (a) \(\Leftrightarrow \) (b). This completes the proof. \(\square \)

Remark A.11

Suppose that the interpolation data have conjugate symmetry in Problem A.5. In other words, suppose that both \((\alpha , \xi ,\eta )\) and \(({\bar{\alpha }}, {\bar{\xi }}, {\bar{\eta }})\) are in its interior interpolation data and that \((\lambda ,F,G)\) and \(({\bar{\lambda }},{\bar{F}},{\bar{G}})\) are in its boundary interpolation data. If the interpolation problem is solvable, then there exists a solution that is a rational function with real coefficients. In fact, for every rational function \(\varPhi \), there uniquely exist rational functions \(\varPhi _R\) and \(\varPhi _I\) with real coefficients such that \(\varPhi = \varPhi _R + i \varPhi _I\). If a rational function \(\varPhi \) is a solution of the interpolation problem, then one can easily prove that its real part \(\varPhi _R\) is also a solution.

Remark A.12

Let \(\lambda \in {\mathbb {T}}\). For a vector pair \((\xi , \eta ) \in {\mathbb {C}}^p \times {\mathbb {C}}^q\), define a matrix \(F:=\xi \eta ^*/\Vert \xi \Vert _{{\mathbb {C}}^{p}}^2\). If \(\Vert \xi \Vert _{{\mathbb {C}}^{p}} > \Vert \eta \Vert _{{\mathbb {C}}^{q}} \), then \(\Vert F\Vert _{{\mathbb {C}}^{p \times q}} < 1\). Further, if a rational function \(\varPsi \in H^{\infty }({\mathbb {D}}, {\mathbb {C}}^{p\times q})\) satisfies \(\varPsi (\lambda ) = F\), then \( \xi ^* \varPsi (\lambda ) = \eta ^* \). In this way, we can transform the tangential interpolation condition \( \xi ^* \varPsi (\lambda ) = \eta ^* \) to the matrix-valued interpolation condition \(\varPsi (\lambda ) = F\). This transformation is used in the design procedure of regulating controllers in Sect. 2 if unstable eigenvalues of A lie on the boundary \({\mathbb {T}}\). Moreover, the above observation and Theorem A.6 indicate that for \(\lambda \in {\mathbb {T}}\) and \((\xi , \eta ) \in {\mathbb {C}}^p \times {\mathbb {C}}^q\) with \(\Vert \xi \Vert _{{\mathbb {C}}^{p}} > \Vert \eta \Vert _{{\mathbb {C}}^{q}}\), boundary interpolation conditions of the form \( \xi ^* \varPsi (\lambda ) = \eta ^* \) can be also ignored when we determine the solvability of the Nevanlinna–Pick interpolation problem.

B \(\varLambda \)-extension of output operator of delay systems

Consider the delay system (4.1), and define x as in (4.2). The objective of this section is to show for a.e. \(t \ge 0\),

$$\begin{aligned} \sum _{\ell =1}^{\widehat{q}} c_\ell z(t-{\widehat{h}}_\ell ) = C_{\varLambda }x(t). \end{aligned}$$
(B.1)

Since \(x(t) \in X_1\) for every \(t \ge h_q\) and since \(C_{\varLambda } \zeta = C \zeta \) for every \(\zeta \in X_1\), it suffices to show (B.1) a.e. on \([0,h_q)\). For simplicity of notation, we consider the case \({\widehat{q}} = 1\) and define \({\widehat{h}} := {\widehat{h}}_1\) and \(c := c_{1}\).

By Lemma 2.4.5 of [10], there exists \(s_0 >0\) such that

$$\begin{aligned} (sI-A)^{-1} x(t) =\begin{bmatrix} g_1(t) \\ g_2(t) \end{bmatrix} \qquad \forall s > s_0,~\forall t \in [0,h_q), \end{aligned}$$

where

$$\begin{aligned} g_1(t)&:= \varDelta (s)^{-1} \left( z(t) + \sum _{j=1}^{q} \int ^0_{-h_j} e^{-s(\theta +h_j) }A_jz(t+\theta ) \text {d}\theta \right) \\ \big (g_2(t)\big )(\theta )&:= e^{s\theta } g_1(t) - \int ^\theta _0 e^{s(\theta -\nu )} z(t+\nu )\text {d}\nu \qquad \forall \theta \in [-h_q,0]. \end{aligned}$$

Hence for every \(s>s_0\) and every \(t \in [0,h_q)\), we obtain

$$\begin{aligned} Cs(sI-A)^{-1}x(t)&= s c \big ( g_2(t) \big )(-{\widehat{h}}) \\&= sc \left( e^{-s {\widehat{h}}} g_1(t) + \int ^{\widehat{h}}_0 e^{-s({\widehat{h}}-\nu )} z(t-\nu )\text {d}\nu \right) . \end{aligned}$$

Since

$$\begin{aligned} \lim _{s\rightarrow \infty ,~\!\! s \in {\mathbb {R}}} s\varDelta (s)^{-1} = I \quad \text {and} \quad z \in L^1 ([-h_q,h_q], \mathbb {C}^n), \end{aligned}$$

Lebesgue’s dominated convergence theorem implies that in the case \({\widehat{h}} = 0\),

$$\begin{aligned}&\lim _{s\rightarrow \infty ,~\!\!s \in {\mathbb {R}}} sc\left( e^{-s {\widehat{h}}} g_1(t) + \int ^{\widehat{h}}_0 e^{-s({\widehat{h}}-\nu )} z(t-\nu )\text {d}\nu \right) \\&\quad = \lim _{s\rightarrow \infty ,~\!\!s \in {\mathbb {R}}} s c\varDelta (s)^{-1} \left( z(t) + \sum _{j=1}^{q} \int ^0_{-h_j} e^{-s(\theta +h_j) }A_jz(t+\theta ) \text {d}\theta \right) \\&\quad = cz(t) \qquad \forall t \in [0,h_q). \end{aligned}$$

Thus, we obtain \(cz(t- {\widehat{h}} ) = C_{\varLambda }x(t)\) for every \( t \in [0,h_q)\) if \({\widehat{h}} = 0\).

In the case \({\widehat{h}} \in (0,h_q)\), we obtain

$$\begin{aligned} \lim _{s \rightarrow \infty ,~\!\! s\in {\mathbb {R}}} s e^{-s \widehat{h}} g_1(t) = 0\qquad \forall t \in [0,h_q). \end{aligned}$$

Since \(B \in {\mathcal {L}}(\mathbb {C},X)\), it follows that \(x(t) \in \mathrm{dom}(C_{\varLambda }) \) for a.e. \(t\ge 0\) and

$$\begin{aligned} C_{\varLambda }x(t)&= \lim _{s \rightarrow \infty ,~\!\!s\in {\mathbb {R}}}Cs(sI-A)^{-1}x(t) \nonumber \\&= \lim _{s \rightarrow \infty ,~\!\!s\in {\mathbb {R}}} s \int ^{{\widehat{h}}}_0 e^{-s({\widehat{h}}-\nu )} \zeta (t-\nu )\text {d}\nu \qquad \text {a.e. } t\ge 0, \end{aligned}$$
(B.2)

where \(\zeta := cz\). For each \(n \in {\mathbb {N}}\), define

$$\begin{aligned} f_n(t) := n\int ^{\widehat{h}}_0 e^{-n({\widehat{h}} - \nu )} \zeta (t-\nu )\text {d}\nu \qquad \forall t \in [0,h_q). \end{aligned}$$

We will show that there exists a subsequence \(\{f_{n_{\ell }}:\ell \in {\mathbb {N}}\}\) such that \(\lim _{\ell \rightarrow \infty }f_{n_\ell }(t)= \zeta (t - {\widehat{h}})\) for a.e. \(t \in [0,h_q)\). Together with (B.2), this yields \(\zeta (t-{\widehat{h}}) = C_{\varLambda }x(t)\) for a.e. \( t \in [0,h_q)\) in the case \({\widehat{h}} \in (0,h_q)\).

Let \(s > s_0\). Define

$$\begin{aligned} \varphi (s) := s\int ^{\widehat{h}}_0 e^{-s({\widehat{h}} - \nu )} \text {d}\nu = 1 - e^{-{\widehat{h}}s}. \end{aligned}$$

Since \(\zeta \in L^1(-h_q,h_q)\), it follows from Fubini’s theorem that

$$\begin{aligned}&\int ^{h_q}_0 \left| \zeta (t-{\widehat{h}}) - s\int ^{\widehat{h}}_0 e^{-s({\widehat{h}} - \nu )} \zeta (t-\nu )\text {d}\nu \right| \text {d}t\\&\quad \le \int ^{h_q}_0 \left| \big (1 - \varphi (s)\big )\zeta (t-{\widehat{h}})\right| \text {d}t + s \int ^{h_q}_0 \int ^{\widehat{h}}_0 e^{-s({\widehat{h}} - \nu )} \big |\zeta (t- {\widehat{h}}) - \zeta (t-\nu ) \big | \text {d}\nu \text {d}t \\&\quad \le e^{-\widehat{h} s} \Vert \zeta \Vert _{L^1(-h_q,h_q)} + s \int ^{\widehat{h}}_0 e^{-s({\widehat{h}} - \nu )} \int ^{h_q}_0 \big |\zeta (t-{\widehat{h}}) - \zeta (t-\nu ) \big | \text {d}t \text {d}\nu . \end{aligned}$$

Choose \(\varepsilon >0\) arbitrarily. By the strong continuity of the left translation semigroup on \(L^1(-h_q,h_q)\) (see, e.g., Example I.5.4 in [11]), there exists \(\delta _0 \in (0, {\widehat{h}})\) such that

$$\begin{aligned} \int ^{h_q}_0 | \zeta (t-{\widehat{h}}) - \zeta (t-{\widehat{h}} +\delta )|\text {d}t < \varepsilon \qquad \forall \delta \in [0,\delta _0). \end{aligned}$$

Therefore,

$$\begin{aligned} s \int ^{\widehat{h}}_{{\widehat{h}} - \delta _0} e^{-s({\widehat{h}} - \nu )} \int ^{h_q}_0 \big |\zeta (t-{\widehat{h}}) - \zeta (t-\nu ) \big | \text {d}t \text {d}\nu< \varepsilon (1-e^{-\delta _0 s}) < \varepsilon . \end{aligned}$$

Since

$$\begin{aligned}&s \int ^{{\widehat{h}} - \delta _0}_{0} e^{-s({\widehat{h}} - \nu )} \int ^{h_q}_0 \big |\zeta (t-{\widehat{h}}) - \zeta (t-\nu ) \big | \text {d}t \text {d}\nu \\&\quad \le 2\Vert \zeta \Vert _{L^1(-h_q,h_q)} (e^{-\delta _0 s} - e^{-{\widehat{h}} s}), \end{aligned}$$

it follows that there exists \(s_1 > s_0\) such that for every \(s > s_1\),

$$\begin{aligned} e^{-\widehat{h} s} \Vert \zeta \Vert _{L^1(-h_q,h_q)}< \varepsilon ,\quad s \int ^{\widehat{h} - \delta _0}_{0} e^{-s({\widehat{h}} - \nu )} \int ^{h_q}_0 \big |\zeta (t-{\widehat{h}}) - \zeta (t-\nu ) \big | \text {d}t \text {d}\nu < \varepsilon . \end{aligned}$$

Hence we obtain

$$\begin{aligned}&\int ^{h_q}_0 \left| \zeta (t-{\widehat{h}}) - s\int ^{\widehat{h}}_0 e^{-s({\widehat{h}} - \nu )} \zeta (t-\nu )\text {d}\nu \right| \text {d}t < 3\varepsilon . \end{aligned}$$

Since \(\varepsilon >0\) was arbitrary, we have that \(\lim _{n \rightarrow \infty }\Vert \zeta (\cdot - {\widehat{h}}) - f_n\Vert _{L^1(0,h_q)} = 0\). Then there exists a subsequence \(\{f_{n_{\ell }}:\ell \in {\mathbb {N}}\}\) such that \(\lim _{\ell \rightarrow \infty }f_{n_\ell }(t)= \zeta (t - {\widehat{h}})\) for a.e. \(t \in [0,h_q)\); see, e.g., Theorem 3.12 in [41]. This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakaiki, M., Sano, H. Sampled-data output regulation of unstable well-posed infinite-dimensional systems with constant reference and disturbance signals. Math. Control Signals Syst. 32, 43–100 (2020). https://doi.org/10.1007/s00498-019-00252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-019-00252-9

Keywords

Mathematics Subject Classification

Navigation