[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Rational approximations of spectral densities based on the Alpha divergence

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We approximate a given rational spectral density by one that is consistent with prescribed second-order statistics. Such an approximation is obtained by selecting the spectral density having minimum “distance” from under the constraint corresponding to imposing the given second-order statistics. We analyze the structure of the optimal solutions as the minimized “distance” varies in the Alpha divergence family. We show that the corresponding approximation problem leads to a family of rational solutions. Secondly, such a family contains the solution which generalizes the Kullback–Leibler solution proposed by Georgiou and Lindquist in 2003. Finally, numerical simulations suggest that this family contains solutions close to the non-rational solution given by the principle of minimum discrimination information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amari SI (1985) Differential-geometrical methods in statistics. Springer, Berlin

    Book  MATH  Google Scholar 

  2. Aujla JS (2011) A simple proof of Lieb concavity theorem. J Math Phys 52(4):043505

    Google Scholar 

  3. Blomqvist A, Lindquist A, Nagamune R (2003) Matrix-valued Nevanlinna-Pick interpolation with complexity constraint: an optimization approach. IEEE Trans Autom Control 48(12):2172–2190

    Article  MathSciNet  Google Scholar 

  4. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  5. Byrnes C, Georgiou TT, Lindquist A (2000) A new approach to spectral estimation: a tunable high-resolution spectral estimator. IEEE Trans Signal Process 48(11):3189–3205

    Article  MATH  MathSciNet  Google Scholar 

  6. Cichocki A, Amari SI (2010) Families of Alpha- Beta- and Gamma- divergences: flexible and robust measures of similarities. Entropy 12(6):1532–1568

    Article  MATH  MathSciNet  Google Scholar 

  7. Cover TM, Thomas JA (1991) Information Theory. Wiley, New York

    MATH  Google Scholar 

  8. Csiszar I, Matus F (2003) Information projections revisited. IEEE Trans Inform Theory 49(6):1474–1490

    Article  MATH  MathSciNet  Google Scholar 

  9. Ferrante A, Masiero C, Pavon M (2012) Time and spectral domain relative entropy: a new approach to multivariate spectral estimation. IEEE Trans Autom Control 57(10):2561–2575

    Article  MathSciNet  Google Scholar 

  10. Ferrante A, Pavon M, Ramponi F (2007) Further results on the Byrnes-Georgiou-Lindquist generalized moment problem. In: Chiuso A, Ferrante A, Pinzoni S (eds) Modeling, Estimation and Control: Festschrift in honor of Giorgio Picci on the occasion of his sixty-fifth birthday. Springer, Berlin, pp 73–83

    Chapter  Google Scholar 

  11. Ferrante A, Pavon M, Ramponi F (2008) Hellinger versus Kullback–Leibler multivariable spectrum approximation. IEEE Trans Autom Control 53(4):954–967

    Article  MathSciNet  Google Scholar 

  12. Ferrante A, Pavon M, Zorzi M (2012) A maximum entropy enhancement for a family of high-resolution spectral estimators. IEEE Trans Autom Control 57(2):318–329

    Article  MathSciNet  Google Scholar 

  13. Ferrante A, Ramponi F, Ticozzi F (2011) On the convergence of an efficient algorithm for Kullback–Leibler approximation of spectral densities. IEEE Trans Autom Control 56(3):506–515

    Article  MathSciNet  Google Scholar 

  14. Georgiou TT (1999) The interpolation problem with a degree constraint. IEEE Trans Autom Control 44(3):631–635

    Article  MATH  MathSciNet  Google Scholar 

  15. Georgiou TT (2002) Spectral analysis based on the state covariance: the maximum entropy spectrum and linear fractional parametrization. IEEE Trans Autom Control 47(11):1811–1823

    Article  MathSciNet  Google Scholar 

  16. Georgiou TT (2002) The structure of state covariances and its relation to the power spectrum of the input. IEEE Trans Autom Control 47(7):1056–1066

    Article  MathSciNet  Google Scholar 

  17. Georgiou TT (2006) Relative entropy and the multivariable multidimensional moment problem. IEEE Trans Inform Theory 52(3):1052–1066

    Article  MathSciNet  Google Scholar 

  18. Georgiou TT, Lindquist A (2003) Kullback–Leibler approximation of spectral density functions. IEEE Trans Inform Theory 49(11):2910–2917

    Article  MathSciNet  Google Scholar 

  19. Kullback S (1959) Information Theory and Statistics. Wiley, New York

    MATH  Google Scholar 

  20. Pavon M, Ferrante A (2006) On the Georgiou–Lindquist approach to constrained Kullback–Leibler approximation of spectral densities. IEEE Trans Autom Control 51(4):639–644

    Article  MathSciNet  Google Scholar 

  21. Ramponi F, Ferrante A, Pavon M (2009) A globally convergent matricial algorithm for multivariate spectral estimation. IEEE Trans Autom Control 54(10):2376–2388

    Article  MathSciNet  Google Scholar 

  22. Zorzi M (2012) A new family of high-resolution multivariate spectral estimators. http://arxiv.org/abs/1210.8290. Accessed 31 Oct 2012

  23. Zorzi M, Ferrante A (2012) On the estimation of structured covariance matrices. Automatica 48(9):2145–2151

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by University of Padova under the project “A Unifying Framework for Spectral Estimation and Matrix Completion: A New Paradigm for Identification, Estimation, and Signal Processing”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Zorzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zorzi, M. Rational approximations of spectral densities based on the Alpha divergence. Math. Control Signals Syst. 26, 259–278 (2014). https://doi.org/10.1007/s00498-013-0118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-013-0118-2

Keywords

Navigation