[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP)

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Analytic hierarchy process (AHP) is a utility theory based decision-making technique, which works on a premise that the decision-making of complex problems can be handled by structuring them into simple and comprehensible hierarchical structures. However, AHP involves human subjective evaluation, which introduces vagueness that necessitates the use of decision-making under uncertainty. The vagueness is commonly handled through fuzzy sets theory, by assigning degree of membership. But, the environmental decision-making problem becomes more involved if there is an uncertainty in assigning the membership function (or degree of belief) to fuzzy pairwise comparisons, which is referred to as ambiguity (non-specificity). In this paper, the concept of intuitionistic fuzzy set is applied to AHP, called IF-AHP to handle both vagueness and ambiguity related uncertainties in the environmental decision-making process. The proposed IF-AHP methodology is demonstrated with an illustrative example to select best drilling fluid (mud) for drilling operations under multiple environmental criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A i (i = 1, 2,..., m):

Possible courses of actions or alternatives

A, B :

Intuitionistic fuzzy set (IFS)

\({\left\langle {{\left[ {{\left({{a}^{\prime}_{1}, {b}^{\prime}_{1}, {c}^{\prime}_{1}} \right)};\mu_{A}} \right]},\;{\left[ {{\left({a_{1}, b_{1}, c_{1}} \right)};\upsilon_{A}} \right]}} \right\rangle}\) :

Triangular intuitionistic fuzzy set

C j (j = 1, 2, ..., n):

Performance criteria or attributes

\(\bar{\bar{F}}_{Ai}\) :

Intuitionistic fuzzy AHP score

\(\bar{\bar{G}}_{k}\) :

Intuitionistic fuzzy global preference weights

\(\bar{\bar{J}}\) :

Intuitionistic fuzzy judgment matrix

\(\bar{\bar{j}}_{{ij}}\) :

Pairwise comparison index in intuitionistic fuzzy judgment matrix

K :

Number of levels in a hierarchical structure

\({\left[ {w^{{LI}}_{i}, w^{{UI}}_{i}} \right]}\) :

Lower and upper interval weights

\((\hat{w}_{i})^{{LI}}_{\alpha},(\hat{w}_{i})^{{UI}}_{\alpha}\) :

Lower and upper normalized interval weights

W = (w 1, w 2, ..., w n ):

Weight vector

\(\bar{\bar{W}}= (\bar{\bar{w}}_{i}, i = 1, 2, \ldots, n)\) :

Intuitionistic fuzzy weight vector

X :

Universe of discourse

x d :

Discrete points defined over the universe of discourse

x ij :

Performance rating of alternative A i for criterion C j

\(\bar{x}(A_{i})\) :

Generalized mean of an alternative A i (a reduced fuzzy set)

Δμ, ΔμL and ΔμU :

fuzzification factors

π x :

Degree of non-determinacy

υ x :

Non-membership function of x

υ A and υ B :

Non-membership function of IFS A and B

μ A and μ B :

Membership function of IFS A and B

μ L and μ U :

Lower and upper bound of membership function μ x

μ x :

Membership function of x

σ(A i ):

Standard deviation of an alternative A i (a reduced fuzzy set)

References

  • Arslan T, Khisty J (2006) A rational approach to handling fuzzy perceptions in route choice. Eur J Oper Res 168(2):571–583

    Article  Google Scholar 

  • Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  Google Scholar 

  • Atanassov KT (1999) Intuitionistic fuzzy sets: theory and applications. Physica-Verlag, Heidelberg

    Google Scholar 

  • Atanassov K, Pasi G, Yager R (2002) Intuitionistic fuzzy interpretation of multi-person multi-criteria decision making. In: 2002 First International IEEE Symposium “Intelligent System”, pp 115–119

  • Beynon MJ (2002) DS/AHP method: a mathematical analysis, including an understanding of uncertainty. Eur J Oper Res 140:148–164

    Article  Google Scholar 

  • Beynon MJ (2005) A method of aggregation in DS/AHP for group decision-making with the non-equivalent importance of individuals in the group. Comput Oper Res 32:1881–1896

    Article  Google Scholar 

  • Beynon MJ, Cosker D, Marshall D (2001) An expert system for multi-criteria decision making using Dempster Shafer theory. Expert Syst Appl 20:357–367

    Article  Google Scholar 

  • Bozbura FT, Beskese A (2006) Prioritization of organizational capital measurement indicators using fuzzy AHP. Int J Approx Reasoning 44(2):124–147

    Article  Google Scholar 

  • Buckley JJ (1985) Fuzzy hierarchical analysis. Fuzzy Sets Syst 17:233–247

    Article  Google Scholar 

  • Bustince H, Burillo P (1996) Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst 79(3):403–405

    Article  Google Scholar 

  • Chang DY (1996) Application of the extent analysis method fuzzy AHP. Eur J Oper Res 95:649–655

    Article  Google Scholar 

  • Chen S-J, Hwang C-L (1992) Fuzzy multiple attribute decision making: methods and applications. Springer, New York, NY

    Google Scholar 

  • Cornelis C, Deschrijver G, Kerre EE (2004) Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. Int J Approx Reasoning 35:55–95

    Article  Google Scholar 

  • Deng H (1999) Multi-criteria analysis with fuzzy pairwise comparison. Int J Approx Reasoning 21(3):215–231

    Article  Google Scholar 

  • Gau W-L, Buehrer DJ (1993) Vague sets. IEEE Trans Syst Man Cyber 23(2):610–614

    Article  Google Scholar 

  • Hong DH, Choi C-H (2000) Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst 114:103–113

    Article  Google Scholar 

  • Hung W-L, Yang M-S (2004) Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance. Pattern Recognit Lett 25:1603–1611

    Article  Google Scholar 

  • Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall International, Upper Saddle River

    Google Scholar 

  • Kreng VB, Wu C-Y (2007) Evaluation of knowledge portal development tools using a fuzzy AHP approach: the case of Taiwanese stone industry. Eur J Oper Res 176(3):1795–1810

    Article  Google Scholar 

  • van Laarhoven PJM, Pedrycz W (1983) A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst 11(3):229–241

    Article  Google Scholar 

  • Lee ES, Li RL (1988) Comparison of fuzzy numbers based on the probability measure of fuzzy events. Comput Math Appl 15:887–896

    Article  Google Scholar 

  • Leung LC, Cao D (2000) On consistency and ranking of alternatives in fuzzy AHP. Eur J Oper Res 124(1):102–113

    Article  Google Scholar 

  • Levary RR, Wan K (1998) A simulation approach for handling uncertainty in the analytic hierarchy process. Eur J Oper Res 106(1):116–122

    Article  Google Scholar 

  • Li D-F (2005) Multiattribute decision making models and methods using intuitionistic fuzzy sets. J Comput Syst Sci 70:73–85

    Article  Google Scholar 

  • Li Y, Olson DL, Qin Z (2007) Similarity measures between intuitionistic fuzzy (vague) sets: a comparative analysis. Pattern Recognit Lett 28:278–285

    Article  Google Scholar 

  • Liu H-W, Wang G-J (2006) Multi-criteria decision-making methods based on intuitionistic fuzzy sets. Eur J Oper Res 179(1):220–233

    Article  Google Scholar 

  • Mendel JM (2004) Fuzzy sets for words: why type-2 fuzzy sets should be used and how they can be used. http://www.fulton.asu.edu/~nsfadp/ieeecis/Mendel.pdf

  • Ozdemir MS, Saaty TL (2006) The unknown in decision next term making what to do about it. Eur J Oper Res 174(1):349–359

    Article  Google Scholar 

  • Parsons S (2001) Qualitative methods for reasoning under uncertainty. MIT, Cambridge

    Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process, McGraw-Hill, New York

    Google Scholar 

  • Saaty TL (2001) How to make a decision? In: Saaty TL, Vargas LG (eds) Models, methods, concepts and applications of the analytic hierarchy process, Chap. 1. Kluwer, Dordrecht

  • Sadiq R (2001) Drilling Waste discharges in the marine environment: a risk-based decision methodology. Ph.D. Thesis, Memorial University of Newfoundland, Canada

  • Sadiq R, Husain T, Veitch B, Bose N (2003) Evaluation of generic types of drilling fluid using a risk-based analytical hierarchy process. Environ Manage 32(6):778–787

    Article  Google Scholar 

  • Sadiq R, Kleiner Y, Rajani B (2004) Aggregative risk analysis for water quality failure in distribution networks. J Water Supply Res Technol-AQUA 53(4):241–261

    Google Scholar 

  • Silavi T, Delavar MR, Malek MR (2006a) Multicriteria map overlay in geospatial information system via intuitionistic fuzzy AHP method. Special Session on “Soft Computing in Image Processing” at the FLINS 2006 Conference, Genova (Italy), August 29–31, 2006

  • Silavi T, Delavar MR, Malek MR, Kamalian N, Karimizand K (2006b) An integrated strategy for GIS-base fuzzy improved earthquake vulnerability assessment. ISRS-ISPRS TC—IV International Symposium on “Geo-information for Disaster Management (Gi4DM),” September 25–26, 2006

  • Sugihara K, Ishii H, Tanaka H (2004) Interval priorities in AHP by interval regression analysis. Eur J Oper Res 158(3):745–754

    Article  Google Scholar 

  • Tesfamariam S, Sadiq R (2006) Risk-based environmental decision-making using fuzzy analytic hierarchy process (F-AHP). Stochastic Environ Res Risk Assess 21(1):35–50

    Article  Google Scholar 

  • U.S. EPA (1999) Development documents for proposed effluent limitations guidelines and standards for synthetic-based drilling fluids and other non-aqueous drilling fluids in the oil and gas extraction point source category, U.S. Environmental Protection Agency, Washington, DC, EPA-821-B-98–021

  • Wang Y-M, Elhag TMS (2006) On the normalization of interval and fuzzy weights. Fuzzy Sets Syst 157:2456–2471

    Article  Google Scholar 

  • Wang Y-M, Yang J-B, Xu D-L (2005) A two-stage logarithmic goal programming method for generating weights from interval comparison matrices. Fuzzy Sets Syst 152:475–498

    Article  Google Scholar 

  • Weck M, Klocke F, Schell H, Rüenauver E (1997) Evaluating alternative production cycles using the extended fuzzy AHP method. Eur J Oper Res 100(2):351–366

    Article  Google Scholar 

  • Yager RR, Kelman A (1999) An extension of the analytical hierarchy process using OWA operators. J Intell Fuzzy Syst 7(4):401–417

    Google Scholar 

  • Yu C-S (2002) A GP-AHP method for solving group decision-making fuzzy AHP problems. Comput Oper Res 29:1969–2001

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8(2):338–353

    Article  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning part I. Inform Sci 8:199–249

    Article  Google Scholar 

  • Zhu KJ, Jing Y, Chang D-Y (1999) A discussion on extent analysis method and applications of fuzzy AHP. Eur J Oper Res 116:450–456

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehan Sadiq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadiq, R., Tesfamariam, S. Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP). Stoch Environ Res Risk Assess 23, 75–91 (2009). https://doi.org/10.1007/s00477-007-0197-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-007-0197-z

Keywords

Navigation