Abstract
A non-invasive implementation of the Latin domain decomposition method for frictional contact problems is described. The formulation implies to deal with mixed (Robin) conditions on the faces of the subdomains, which is not a classical feature of commercial software. Therefore we propose a new implementation of the linear stage of the Latin method with a non-local search direction built as the stiffness of a layer of elements on the interfaces. This choice enables us to implement the method within the open source software Code_Aster, and to derive 2D and 3D examples with similar performance as the standard Latin method.
Similar content being viewed by others
References
Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375
Belgacem F, Hild P, Laborde P (1998) Recent advances in contact mechanics the mortar finite element method for contact problems. Math Comput Model 28(4):263–271
Belgacem FB, Maday Y (1997) The mortar element method for three dimensional finite elements. ESAIM Math Model Numer Anal 31(2):289–302
Cai XC, Sarkis M (1999) A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J Sci Comput 21(2):792–797
Cai XC, Farhat C, Sarkis M (1998) A minimum overlap restricted additive Schwarz preconditioner and applications to 3D flow simulations. Contemp Math 218:479–485
Champaney L, Boucard P (2003) Multiresolution strategy for the parametric study of assemblies including contact with friction. In: 7th international conference on computational plasticity (COMPLAS), Barcelone, Espagne, cf. p. 41
Christensen P, Klarbring A, Pang JS, Strömberg N (1998) Formulation and comparison of algorithms for frictional contact problems. Int J Numer Methods Eng 42(1):145–173
Christensen PW (2002) A semi-smooth newton method for elasto-plastic contact problems. Int J Solids Struct 39(8):2323–2341
Desmeure G, Rey C, Gosselet P, Cresta P (2012) On the representation of interface traction field in a mixed domain decomposition method for structural assemblies. In: WCCM—10th world congress on computational mechanics, Sao Paolo
Dohrmann C (2003) A preconditioner for substructuring based on constrained energy minimization. SIAM J Sci Comput 25(1):246–258
Dostál Z, Horák D (2004) Scalable FETI with optimal dual penalty for a variational inequality. Numer Linear Algebra Appl 11(56):455–472
Dostál Z, Horák D, Kučera R, Vondrák V, Haslinger J, Dobiáš J, Pták S (2005) FETI based algorithms for contact problems: scalability, large displacements and 3D Coulomb friction. Comput Methods Appl Mech Eng 194(2–5):395–409
Dostál Z, Kozubek T, Vondr V, Brzobohaty T, Markopoulos A (2010) Scalable TFETI algorithm for the solution of multibody contact problems of elasticity. Int J Numer Methods Eng 82(11):1384–1405. doi:10.1002/nme.2807
Dostál Z, Kozubek T, Brzobohaty T, Markopoulos A, Vlach O (2012) Scalable TFETI with optional preconditioning by conjugate projector for transient frictionless contact problems of elasticity. Comput Methods Appl Mech Eng 247–248:37–50
Farhat C, Mandel J (1998) The two-level FETI method for static and dynamic plate problems Part I: an optimal iterative solver for biharmonic systems. Comput Methods Appl Mech Eng 155(1–2):129–151
Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32(6):1205–1227
Farhat C, Mandel J, Roux F (1994) Optimal convergence properties of the FETI domain decomposition method. Comput Methods Appl Mech Eng 115(3–4):365–385
Farhat C, Lesoinne M, Patrick L, Pierson K, Rixen D (2001) FETI-DP: a dual-primal unified FETI method—part I: a faster alternative to the two-level FETI method. Int J Numer Methods Eng 50(7):1523–1544. doi:10.1002/nme.76
Gander MJ (2006) Optimized Schwarz methods. SIAM Rev 44(2):699–731
Glowinski R (2015) Variational methods for the numerical solution of nonlinear elliptic problems. Society for Industrial and Applied Mathematics, Philadelphia. doi:10.1137/1.9781611973785
Glowinski R, Le Tallec P (1989) Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. SIAM studies in applied mathematics. Society for Industrial and Applied Mathematics, Philadelphia. doi:10.1137/1.9781611970838
Gosselet P, Rey C (2007) Non-overlapping domain decomposition methods in structural mechanics. Arch Comput Methods Eng 13(4):515–572
Gosselet P, Rixen D, Roux FX, Spillane N (2015) Simultaneous-FETI and Block-FETI: robust domain decomposition with multiple search directions. Int J Numer Methods Eng 104(10):905–927
Hoang TP, Japhet C, Kern M, Roberts J (2014) Ventcell conditions with mixed formulations for flow in porous media. In: Dickopf T, Gander M, Halpern L, Krause R, Pavarino L (eds) Domain decomposition methods in science and engineering XXII, Lugano, pp 531–540
Jourdan F, Alart P, Jean M (1998) A Gauss–Seidel like algorithm to solve frictional contact problems. Comput Methods Appl Mech Eng 155(1):31–47
Kerfriden P, Allix O, Gosselet P (2009) A three-scale domain decomposition method for the 3D analysis of debonding in laminates. Comput Mech 44(3):343–362
Koko J (2011) Uzawa block relaxation method for the unilateral contact problem. J Comput Appl Math 235(8):2343–2356
Ladevèze P (1999) Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation. Mech Eng Ser. doi:10.1007/978-1-4612-1432-8
Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192(28–30):3061–3087
Ladevèze P, Lemoussu H, Boucard P (2000) A modular approach to 3-D impact computation with frictional contact. Comput Struct 78(1–3):45–51
Lemoussu H, Boucard PA, Ladevèze P (2002) A 3D shock computational strategy for real assembly and shock attenuator. Adv Eng Softw 7–10:517–526
Mandel J, Brezina M (1993) Balancing domain decomposition: theory and performance in two and three dimensions. Tech. rep., University of Colorado at Denver, Denver
Parret-Fréaud A, Rey V, Gosselet P, Rey C (2017) Improved recovery of admissible stress in domain decomposition methods-application to heterogeneous structures and new error bounds for FETI-DP. Int J Numer Methods Eng. doi:10.1002/nme.5462
Renouf M, Alart P (2005) Conjugate gradient type algorithms for frictional multi-contact problems: applications to granular materials. Comput Methods Appl Mech Eng 194(18):2019–2041
Rotscher F (1927) Die Maschinenelemente. Springer, Berlin
Roulet V, Champaney L, Pa Boucard (2011) A parallel strategy for the multiparametric analysis of structures with large contact and friction surfaces. Adv Eng Softw 42(6):347–358
Saavedra K, Allix O, Gosselet P (2012) On a multiscale strategy and its optimization for the simulation of combined delamination and buckling. Int J Numer Methods Eng 91(7):772–798
Saavedra Redlich K (2012) Stratégie multiéchelle pour l’analyse du couplage flambage-délaminage de composites stratifiés. PhD thesis, École normale supérieure de Cachan
Simo JC, Laursen T (1992) An augmented Lagrangian treatment of contact problems involving friction. Comput Struct 42(1):97–116
Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50(2):163–180
Spillane N, Rixen DJ (2013) Automatic spectral coarse spaces for robust FETI and BDD algorithms. Int J Numer Methods Eng 95(11):953–990
Wriggers P (1996) Finite element methods for contact problems with friction. Tribol Int 29(8):651–658
Yastrebov VA (2013) Numerical methods in contact mechanics. Numerical methods in engineering series. ISTE/Wiley, London/Hoboken
Acknowledgements
We thank Airbus Group Innovations and EDF for their financial and technical support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Oumaziz, P., Gosselet, P., Boucard, PA. et al. A non-invasive implementation of a mixed domain decomposition method for frictional contact problems. Comput Mech 60, 797–812 (2017). https://doi.org/10.1007/s00466-017-1444-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00466-017-1444-x