Abstract
Independent Set Reconfiguration is one of the most well-studied problems in the setting of combinatorial reconfiguration. It is known that the problem is PSPACE-complete even for graphs of bounded bandwidth. This fact rules out the tractability of parameterizations by most well-studied structural parameters as most of them generalize bandwidth. In this paper, we study the parameterization by modular-width, which is not comparable with bandwidth. We show that the problem parameterized by modular-width is fixed-parameter tractable under all previously studied rules \({\mathsf {TAR}}\), \({\mathsf {TJ}}\), and \({\mathsf {TS}}\). The result under \({\mathsf {TAR}}\) resolves an open problem posed by Bonsma (J Graph Theory 83(2):164–195, 2016).
Similar content being viewed by others
Notes
Recall that an algorithm for a parameterized problem is an FPT algorithm if it runs in time \(O(f(k) \cdot n^{O(1)})\), where n is the input size, k is the parameter, and f is some computable funciton.
The \(O^*(\cdot )\) notation suppresses factors polynomial in the input size.
References
Belmonte, R., Kim, E.J., Lampis, M., Mitsou, V., Otachi, Y., Sikora, F.: Token sliding on split graphs. In: STACS, Volume 126 of LIPIcs, pp. 13:1–13:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019)
Bonamy, M., Bousquet, N.: Token sliding on chordal graphs. In: WG 2017, Volume 10520 of LNCS, pp. 127–139 (2017)
Bonsma, P.S.: Independent set reconfiguration in cographs and their generalizations. J. Graph Theory 83(2), 164–195 (2016)
Bonsma, P.S., Kaminski, M., Wrochna, M.: Reconfiguring independent sets in claw-free graphs. In: SWAT, Volume 8503 of LNCS, pp. 86–97. Springer (2014)
Bousquet, N., Mary, A., Parreau, A.: Token jumping in minor-closed classes. In: FCT, Volume 10472 of LNCS, pp. 136–149. Springer (2017)
Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In: CAAP, Volume 787 of LNCS, pp. 68–84. Springer (1994)
Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)
Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T., Ono, H., Otachi, Y., Uehara, R., Yamada, T.: Linear-time algorithm for sliding tokens on trees. Theor. Comput. Sci. 600, 132–142 (2015)
Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized by vertex cover and modular width, through potential maximal cliques. Algorithmica 80(4), 1146–1169 (2018)
Fox-Epstein, E., Hoang, D.A., Otachi, Y., Uehara, R.: Sliding token on bipartite permutation graphs. In: ISAAC, Volume 9472 of LNCS, pp. 237–247. Springer (2015)
Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-width. In: IPEC, Volume 8246 of LNCS, pp. 163–176. Springer (2013)
Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)
Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343(1–2), 72–96 (2005)
Hoang, D.A., Uehara, R.: Sliding tokens on a cactus. In: ISAAC, Volume 64 of LIPIcs, pp. 37:1–37:26. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)
Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011)
Ito, T., Kaminski, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: On the parameterized complexity for token jumping on graphs. In: TAMC, Volume 8402 of LNCS, pp. 341–351. Springer (2014)
Ito, T., Kaminski, M.J., Ono, H.: Fixed-parameter tractability of token jumping on planar graphs. In: ISAAC, Volume 8889 of LNCS, pp. 208–219. Springer (2014)
Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)
Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)
Lokshtanov, D., Mouawad, A.E.: The complexity of independent set reconfiguration on bipartite graphs. In: SODA 2018, pp. 185–195 (2018)
Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. Algorithmica 78(1), 274–297 (2017)
Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: ICALP (1), Volume 5125 of LNCS, pp. 634–645. Springer (2008)
van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013, Volume 409 of London Mathematical Society Lecture Note Series, pp. 127–160. Cambridge University Press (2013)
Wrochna, M.: Reconfiguration in bounded bandwidth and tree-depth. J. Comput. Syst. Sci. 93, 1–10 (2018)
Acknowledgements
Partially supported by JSPS and MAEDI under the Japan-France Integrated Action Program (SAKURA) Project GRAPA 38593YJ, and by JSPS/MEXT KAKENHI Grant Numbers JP24106004, JP17H01698, JP18K11157, JP18K11168, JP18K11169, JP18H04091, JP18H06469. A preliminary version appeared in the proceedings of the 45th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2019), Lecture Notes in Computer Science 11789 (2019) 285–297.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Belmonte, R., Hanaka, T., Lampis, M. et al. Independent Set Reconfiguration Parameterized by Modular-Width. Algorithmica 82, 2586–2605 (2020). https://doi.org/10.1007/s00453-020-00700-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-020-00700-y