[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Covering Uncertain Points in a Tree

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper, we consider a coverage problem for uncertain points in a tree. Let T be a tree containing a set \({\mathcal {P}}\) of n (weighted) demand points, and the location of each demand point \(P_i\in {{\mathcal {P}}}\) is uncertain but is known to appear in one of \(m_i\) points on T each associated with a probability. Given a covering range\(\lambda \), the problem is to find a minimum number of points (called centers) on T to build facilities for serving (or covering) these demand points in the sense that for each uncertain point \(P_i\in {{\mathcal {P}}}\), the expected distance from \(P_i\) to at least one center is no more than \(\lambda \). The problem has not been studied before. We present an \(O(|T|+M\log ^2 M)\) time algorithm for the problem, where |T| is the number of vertices of T and M is the total number of locations of all uncertain points of \({{\mathcal {P}}}\), i.e., \(M=\sum _{P_i\in {{\mathcal {P}}}}m_i\). In addition, by using this algorithm, we solve a k-center problem on T for the uncertain points of \({{\mathcal {P}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agarwal, P.K., Cheng, S.-W., Tao, Y., Yi, K.: Indexing uncertain data. In: Proceedings of the 28th Symposium on Principles of Database Systems (PODS), pp. 137–146 (2009)

  2. Agarwal, P.K., Efrat, A., Sankararaman, S., Zhang, W.: Nearest-neighbor searching under uncertainty. In: Proceedings of the 31st Symposium on Principles of Database Systems (PODS), pp. 225–236 (2012)

  3. Agarwal, P.K., Har-Peled, S., Suri, S., Yıldız, H., Zhang, W.: Convex hulls under uncertainty. In: Proceedings of the 22nd Annual European Symposium on Algorithms (ESA), pp. 37–48 (2014)

  4. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM Comput. Surv. 30(4), 412–458 (1998)

    Article  Google Scholar 

  5. Averbakh, I., Bereg, S.: Facility location problems with uncertainty on the plane. Discrete Optim. 2, 3–34 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Averbakh, I., Berman, O.: Minimax regret \(p\)-center location on a network with demand uncertainty. Locat. Sci. 5, 247–254 (1997)

    Article  MATH  Google Scholar 

  7. Bender, M., Farach-Colton, M.: The LCA problem revisited. In: Proceedings of the 4th Latin American Symposium on Theoretical Informatics, pp. 88–94 (2000)

  8. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplied. Theor. Comput. Sci. 321, 5–12 (2004)

    Article  MATH  Google Scholar 

  9. Bereg, S., Bhattacharya, B., Das, S., Kameda, T., Mahapatra, P.R.S., Song, Z.: Optimizing squares covering a set of points. Theoretical Computer Science (2015) (in press)

  10. Brodal, G., Jacob, R.: Dynamic planar convex hull. In: Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 617–626 (2002)

  11. Chan, T.M., Hu, N.: Geometric red-blue set cover for unit squares and related problems. Comput. Geom. 48(5), 380–385 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chazelle, B., Guibas, L.: Fractional cascading: I. A data structuring technique. Algorithmica 1(1), 133–162 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng, R., Chen, J., Xie, X.: Cleaning uncertain data with quality guarantees. Proc. VLDB Endow. 1(1), 722–735 (2008)

    Article  Google Scholar 

  14. Cheng, R., Xia, Y., Prabhakar, S., Shah, R., Vitter, J.S.: Efficient indexing methods for probabilistic threshold queries over uncertain data. In: Proceedings of the 30th International Conference on Very Large Data Bases (VLDB), pp. 876–887 (2004)

  15. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J. ACM 34(1), 200–208 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Berg, M., Roeloffzen, M., Speckmann, B.: Kinetic 2-centers in the black-box model. In: Proceedings of the 29th Annual Symposium on Computational Geometry (SoCG), pp. 145–154 (2013)

  17. Dong, X., Halevy, A.Y., Yu, C.: Data integration with uncertainty. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 687–698 (2007)

  18. Frederickson, G.N.: Parametric search and locating supply centers in trees. In: Proceedings of the 2nd International Workshop on Algorithms and Data Structures (WADS), pp. 299–319 (1991)

  19. Frederickson, G.N., Johnson, D.B.: Finding \(k\)th paths and \(p\)-centers by generating and searching good data structures. J. Algorithms 4(1), 61–80 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gonzalez, T.F.: Covering a set of points in multidimensional space. Inf. Process. Lett. 40(4), 181–188 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13, 338–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, L., Li, J.: Stochastic \(k\)-center and \(j\)-flat-center problems. In: Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 110–129 (2017)

  24. Jørgensen, A., Löffler, M., Phillips, J.M.: Geometric computations on indecisive points. In: Proceedings of the 12nd Algorithms and Data Structures Symposium (WADS), pp. 536–547 (2011)

  25. Kamousi, P., Chan, T.M., Suri, S.: Closest pair and the post office problem for stochastic points. In: Proceedings of the 12nd Algorithms and Data Structures Symposium (WADS), pp. 548–559 (2011)

  26. Kamousi, P., Chan, T.M., Suri, S.: Stochastic minimum spanning trees in Euclidean spaces. In: Proceedings of the 27th Annual Symposium on Computational Geometry (SoCG), pp. 65–74 (2011)

  27. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems. I: the \(p\)-centers. SIAM J. Appl. Math. 37(3), 513–538 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems. II: the \(p\)-medians. SIAM J. Appl. Math. 37(3), 539–560 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kim, S.-S., Bae, S.W., Ahn, H.-K.: Covering a point set by two disjoint rectangles. Int. J. Comput. Geom. Appl. 21, 313–330 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related problems on imprecise points. Comput. Geom. Theory Appl. 43(4), 419–433 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Megiddo, N.: Linear-time algorithms for linear programming in \(R^3\) and related problems. SIAM J. Comput. 12(4), 759–776 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Megiddo, N., Tamir, A.: New results on the complexity of \(p\)-centre problems. SIAM J. Comput. 12(4), 751–758 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Megiddo, N., Tamir, A., Zemel, E., Chandrasekaran, R.: An \(O(n \log ^2 n)\) algorithm for the \(k\)-th longest path in a tree with applications to location problems. SIAM J. Comput. 10, 328–337 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problems via local search. In: Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG), pp. 17–22 (2009)

  35. Suri, S., Verbeek, K.: On the most likely voronoi diagram and nearest neighbor searching. In: Proceedings of the 25th International Symposium on Algorithms and Computation (ISAAC), pp. 338–350 (2014)

  36. Suri, S., Verbeek, K., Yıldız, H.: On the most likely convex hull of uncertain points. In: Proceedings of the 21st European Symposium on Algorithms (ESA), pp. 791–802 (2013)

  37. Tao, Y., Xiao, X., Cheng, R.: Range search on multidimensional uncertain data. ACM Trans. Database Syst. 32, 15 (2007)

    Article  Google Scholar 

  38. Wang, H.: Minmax regret 1-facility location on uncertain path networks. Eur. J. Oper. Res. 239, 636–643 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, H., Zhang, J.: One-dimensional \(k\)-center on uncertain data. Theor. Comput. Sci. 602, 114–124 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, H., Zhang, J.: Computing the center of uncertain points on tree networks. Algorithmica 78(1), 232–254 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, H., Zhang, J.: An \(O(n \log n)\)-time algorithm for the \(k\)-center problem in trees. In: Proceedings of the 34th International Symposium on Computational Geometry (SoCG), pp. 72:1–72:15 (2018)

  42. Yiu, M.L., Mamoulis, N., Dai, X., Tao, Y., Vaitis, M.: Efficient evaluation of probabilistic advanced spatial queries on existentially uncertain data. IEEE Trans. Knowl. Data Eng. 21, 108–122 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingru Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appeared in the Proceedings of the 15th Algorithms and Data Structures Symposium (WADS 2017). This research was supported in part by NSF under Grant CCF-1317143.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, J. Covering Uncertain Points in a Tree. Algorithmica 81, 2346–2376 (2019). https://doi.org/10.1007/s00453-018-00537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-00537-6

Keywords

Navigation