[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Provable ICA with Unknown Gaussian Noise, and Implications for Gaussian Mixtures and Autoencoders

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present a new algorithm for independent component analysis which has provable performance guarantees. In particular, suppose we are given samples of the form \(y = Ax + \eta \) where \(A\) is an unknown but non-singular \(n \times n\) matrix, \(x\) is a random variable whose coordinates are independent and have a fourth order moment strictly less than that of a standard Gaussian random variable and \(\eta \) is an \(n\)-dimensional Gaussian random variable with unknown covariance \(\varSigma \): We give an algorithm that provably recovers \(A\) and \(\varSigma \) up to an additive \(\epsilon \) and whose running time and sample complexity are polynomial in \(n\) and \(1 / \epsilon \). To accomplish this, we introduce a novel “quasi-whitening” step that may be useful in other applications where there is additive Gaussian noise whose covariance is unknown. We also give a general framework for finding all local optima of a function (given an oracle for approximately finding just one) and this is a crucial step in our algorithm, one that has been overlooked in previous attempts, and allows us to control the accumulation of error when we find the columns of \(A\) one by one via local search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Technically, there are \(2n\) local maxima since for each direction \(u\) that is a local maxima, so too is \(-u\) but this is an unimportant detail for our purposes.

References

  1. Anandkumar, A., Foster, D., Hsu, D., Kakade, S., Liu, Y.: Two SVDs suffice: spectral decompositions for probabilistic topic modeling and latent dirichlet allocation. arxiv:abs/1203.0697 (2012)

  2. Anderson, J., Belkin, M., Goyal, N., Rademacher, L., Voss, J.: The more the merrier: the blessing of dimensionality for learning large gaussian mixtures. arxiv:1311.2891 (2013)

  3. Arora, S., Kannan, R.: Learning mixtures of separated nonspherical gaussians. Ann. Appl. Probab. 15(1A), 69–92 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Belkin, M., Rademacher, L., Voss, J.: Blind signal separation in the presence of gaussian noise. In: COLT (2013)

  5. Belkin, M., Sinha, K.: Polynomial learning of distribution families. In: FOCS pp. 103–112 (2010)

  6. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bhaskara, A., Charikar, M., Moitra, A., Vijayaraghavan, A.: Smoothed analysis of tensor decompositions. arxiv:1311.3651 (2013)

  8. Bhaskara, A., Charikar, M., Vijayaraghavan, A.: Uniqueness of tensor decompositions with applications to polynomial identifiability. arxiv:1304.8087 (2013)

  9. Comon, P.: Independent component analysis: a new concept? Signal Process. 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  10. Cruces, S., Castedo, L., Cichocki, A.: Robust blind source separation algorithms using cumulants. Neurocomputing 49(14), 87–118 (2002)

    Article  MATH  Google Scholar 

  11. Dasgupta, S.: Learning mixtures of Gaussians. In: FOCS pp. 634–644 (1999)

  12. De Lathauwer, L., De Moor, B., Vandewalle, J.: Independent component analysis based on higher-order statistics only. In: Proceedings of 8th IEEE Signal Processing Workshop on Statistical Signal and Array Processing (1996)

  13. De Lathauwer, L., Castaing, J., Cardoso, J.: Fourth-order cumulant-based blind identification of underdetermined mixtures. IEEE Trans. Signal Process. 55(6), 2965–2973 (2007)

    Article  MathSciNet  Google Scholar 

  14. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM Algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  15. Freund, Y., Haussler, D.: Unsupervised Learning of Distributions on Binary Vectors Using Two Layer Networks. University of California at Santa Cruz, Santa Cruz (1994)

    Google Scholar 

  16. Frieze, A., Jerrum, M., Kannan, R.: Learning linear transformations. In: FOCS, pp. 359–368 (1996)

  17. Goyal, N., Vempala, S., Xiao, Y.: Fourier PCA. arxiv:1306.5825 (2013)

  18. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hinton, G.E.: A practical guide to training restricted boltzmann machines. UTML TR 2010-003, Department of Computer Science, University of Toronto (2010)

  20. Hsu, D., Kakade, S.: Learning mixtures of spherical Gaussians: moment methods and spectral decompositions. arxiv:abs/1206.5766 (2012)

  21. Huber, P.J.: Projection pursuit. Ann. Stat. 13(2), 435–475 (1985)

    Article  MATH  Google Scholar 

  22. Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)

    Article  Google Scholar 

  23. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Book  Google Scholar 

  24. Kalai, A.T., Moitra, A., Valiant, G.: Efficiently learning mixtures of two Gaussians. In: STOC pp. 553–562 (2010)

  25. Kendall, M., Stuart, A.: The Advanced Theory of Statistics. Charles Griffin and Company, London (1958)

    Google Scholar 

  26. Moitra, A., Valiant, G.: Setting the polynomial learnability of mixtures of Gaussians. In: FOCS pp. 93–102 (2010)

  27. Vempala, S., Xiao, Y.: Structure from local optima: learning subspace juntas via higher order PCA. arxiv:abs/1108.3329 (2011)

  28. Yeredor, A.: Blind source separation via the second characteristic function. Signal Process. 80(5), 897–902 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Moitra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Ge, R., Moitra, A. et al. Provable ICA with Unknown Gaussian Noise, and Implications for Gaussian Mixtures and Autoencoders. Algorithmica 72, 215–236 (2015). https://doi.org/10.1007/s00453-015-9972-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-015-9972-2

Keywords

Navigation