Abstract
Kernelization algorithms for the cluster editing problem have been a popular topic in the recent research in parameterized computation. Most kernelization algorithms for the problem are based on the concept of critical cliques. In this paper, we present new observations and new techniques for the study of kernelization algorithms for the cluster editing problem. Our techniques are based on the study of the relationship between cluster editing and graph edge-cuts. As an application, we present a simple algorithm that constructs a 2k-vertex kernel for the integral-weighted version of the cluster editing problem. Our result matches the best kernel bound for the unweighted version of the cluster editing problem, and significantly improves the previous best kernel bound for the weighted version of the problem. For the more general real-weighted version of the problem, our techniques lead to a simple kernelization algorithm that constructs a kernel of at most 4k vertices.
Similar content being viewed by others
References
Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5), 1–27 (2008). Article 23
Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: ICALP 2009. LNCS, vol. 5555, pp. 49–58. Springer, Berlin (2009)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1), 89–113 (2004)
Berkhin, P.: A survey of clustering data mining techniques. In: Grouping Multidimensional Data, pp. 25–71. Springer, Berlin (2006)
Betzler, N., Guo, J., Komusiewicz, C., Niedermeier, R.: Average parameterization and partial kernelization for computing medians. J. Comput. Syst. Sci. 77(4), 774–789 (2011)
Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.: Kernels for feedback arc set in tournaments. J. Comput. Syst. Sci. (2010). doi:10.1016/j.jcss.2010.10.001
Böcker, S., Briesemeister, S., Bui, Q.B.A., Truss, A.: Going weighted: parameterized algorithms for cluster editing. Theor. Comput. Sci. 410, 5467–5480 (2009)
Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput. Syst. Sci. 71(3), 360–383 (2005)
Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. J. Comput. Syst. Sci. (2011). doi:10.1016/j.jcss.2011.04.001
Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Can. J. Math. 32(3), 734–765 (1980)
Dean, J., Henzinger, M.R.: Finding related pages in the World Wide Web. Comput. Netw. 31, 1467–1479 (1999)
Feige, U.: Faster FAST. In: CoRR (2009). arXiv:0911.5094
Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized preprocessing for cluster editing. In: FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Berlin (2007)
Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005)
Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8–10), 718–726 (2009)
Hearst, M.A., Pedersen, J.O.: Reexamining the cluster hypothesis: scatter/gather on retrieval results. In: Proceedings of SIGIR, pp. 76–84 (1996)
Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, Kemeny rank aggregation and betweenness tournament. In: ISAAC 2010. LNCS, vol. 6506, pp. 3–14. Springer, Berlin (2010)
Komusiewicz, C.: Algorithmics for network analysis: Clustering & querying. PhD thesis, Technische Universität Berlin, Berlin, Germany (2011)
Krivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta Inform. 23(3), 311–323 (1986)
de Montgolfier, F.: Décomposition modulaire des graphes. Théorie, extensions et algorithmes. Thése de doctorat, Université Montpellier II (2003)
Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004)
van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. Math. Oper. Res. 34(3), 594–620 (2009)
Wittkop, T., Baumbach, J., Lobo, F., Rahmann, S.: Large scale clustering of protein sequences with FORCE—A layout based heuristic for weighted cluster editing. BMC Bioinform. 8(1), 396 (2007)
Acknowledgements
Supported in part by the US National Science Foundation under the Grants CCF-0830455 and CCF-0917288.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cao, Y., Chen, J. Cluster Editing: Kernelization Based on Edge Cuts. Algorithmica 64, 152–169 (2012). https://doi.org/10.1007/s00453-011-9595-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-011-9595-1