Abstract
We show how to compute in O(n 4/3log 1/3 n+n 2/3 k 2/3log n) time the distance between k given pairs of vertices of a planar graph G with n vertices. This improves previous results whenever (n/log n)5/6≤k≤n 2/log 6 n. As an application, we speed up previous algorithms for computing the dilation of geometric planar graphs.
Similar content being viewed by others
References
Arikati, S., Chen, D.Z., Chew, L.P., Das, G., Smid, M., Zaroliagis, C.: Planar spanners and approximate shortest path queries among obstacles in the plane. In: ESA’96. LNCS, vol. 1136, pp. 514–528. Springer, Berlin (1996)
Cabello, S.: Many distances in planar graphs. In: SODA ’06: Proc. 17th Symp. Discrete Algorithms, pp. 1213–1220. ACM Press, New York (2006)
Cabello, S., Chambers, E.W.: Multiple source shortest paths in a genus g graph. In: SODA ’07: Proc. 18th Symp. Discrete Algorithms, pp. 89–97 (2007)
Chan, T.M.: All-pairs shortest paths with real weights in O(n 3/log n) time. Algorithmica 50(2), 236–243 (2008)
Chen, D.Z., Xu, J.: Shortest path queries in planar graphs. In: STOC ’00: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 469–478 (2000)
Djidjev, H.N.: Efficient algorithms for shortest path problems on planar digraphs. In: d’Amore, F., Franciosa, P.G., Marchetti-Spaccamela, A. (eds.) WG’96. LNCS, vol. 1197, pp. 151–165. Springer, Berlin (1997)
Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 425–461. Elsevier, Amsterdam (2000). Chap. 9
Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths, and near linear time. J. Comput. Syst. Sci. 72(5), 868–889 (2006)
Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16, 1004–1022 (1987)
Frederickson, G.N.: Planar graph decomposition and all pairs shortest paths. J. ACM 38(1), 162–204 (1991)
Goodrich, M.T.: Planar separators and parallel polygon triangulation. J. Comput. Syst. Sci. 51(3), 374–389 (1995)
Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Approximate distance oracles for geometric spanners. ACM Trans. Algorithms 4(1), 1–34 (2008)
Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55(1), 3–23 (1997)
Klein, P., Mozes, S., Weimann, O.: Shortest paths in directed planar graphs with negative lengths: A linear-space O(nlog 2 n)-time algorithm. ACM Trans. Algorithms 6(2), 1–18 (2010)
Klein, P.N.: Multiple-source shortest paths in planar graphs. In: SODA ’05: Proc. 16th Symp. Discrete Algorithms, pp. 146–155 (2005)
Kowalik, L., Kurowski, M.: Short path queries in planar graphs in constant time. In: STOC ’03: Proc. 35th Symp. Theory of Computing, pp. 143–148 (2003)
Kutz, M.: Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time. In: SOCG ’06: Proc. 22nd Symp. Comput. Geom., pp. 430–438 (2006)
Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 177–189 (1979)
Lipton, R.J., Rose, D., Tarjan, R.E.: Generalized nested dissection. SIAM J. Numer. Anal. 16, 346–358 (1979)
Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci. 32, 265–279 (1986)
Narasimhan, G., Smid, M.: Approximating the stretch factor of Euclidean graphs. SIAM J. Comput. 30, 978–989 (2000)
Overmars, M.H.: The Design of Dynamic Data Structures. Lecture Notes in Computer Science, vol. 156. Springer, Berlin (1983)
Tazari, S., Müller-Hannemann, M.: Shortest paths in linear time on minor-closed graph classes, with an application to Steiner tree approximation. Discrete Appl. Math. 157, 673–684 (2009)
Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. J. ACM 51(6), 993–1024 (2004)
Zwick, U.: Exact and approximate distances in graphs—A survey. In: ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Berlin (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
A preliminary version was presented at the 17th Annual ACM-SIAM Symposium on Discrete algorithms [2]. Research partially supported by the European Community Sixth Framework Programme under a Marie Curie Intra-European Fellowship and by the Slovenian Research Agency, project J1-7218 and program P1-0297.
Rights and permissions
About this article
Cite this article
Cabello, S. Many Distances in Planar Graphs. Algorithmica 62, 361–381 (2012). https://doi.org/10.1007/s00453-010-9459-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-010-9459-0