Abstract
In this paper, we introduce and study several statistics on some families of polyominoes, named smooth column convex polyominoes and lower/upper smooth column convex polyominoes. We find the generating function in each case according to half of the number of horizontal and vertical steps in the boundary of polyominoes. In particular, we show that the number of smooth column convex polyominoes with semi-perimeter n is asymptotic to \(4^{n+4}{\sqrt{3}}/({289\sqrt{\pi n^3}})\), as \(n\rightarrow \infty \). In deriving our results, we solve various types of functional equations that are satisfied by the generating functions.
Similar content being viewed by others
References
Banderier, C., Bousquet-Mélou, M., Denise, A., Flajolet, P., Gardy, D., Gouyou-Beauchamps, D.: Generating functions for generating trees. Discrete Math. 246(1–3), 29–55 (2002)
Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex polyominoes from horizontal and vertical projections. Theor. Comput. Sci. 155(2), 321–347 (1996)
Barcucci, E., Frosini, A., Rinaldi, S.: On directed-convex polyominoes in a rectangle. Discrete Math. 298(1–3), 62–78 (2005)
Beauquier, D., Nivat, M.: On translating one polyomino to tile the plane. Discrete Comput. Geom. 6(6), 575–592 (1991)
Beauquier, D., Nivat, M., Remila, É., Robson, M.: Tiling figures of the plane with two bars. Comput. Geom. 5(1), 1–25 (1995)
Berger, R.: Undecidability of the Domino Problem. Memoirs of the American Mathematical Society, vol. 66. American Mathematical Society, Providence (1966)
Bousquet-Mélou, M., Brak, R.: Exactly solved models. In: Polygons, Polyominoes and Polycubes. Lecture Notes in Physics, vol. 775, pp. 43–78. Springer, Dordrecht (2009)
Bousquet-Mélou, M., Rechnitzer, A.: The site-perimeter of bargraphs. Adv. Appl. Math. 31(1), 86–112 (2003)
Broadbent, S.R., Hammersley, J.M.: Percolation processes. I. Crystals and mazes. Proc. Camb. Philos. Soc. 53, 629–641 (1957)
Brunetti, S., Daurat, A.: Random generation of \(Q\)-convex sets. Theor. Comput. Sci. 347(1–2), 393–414 (2005)
Cannon, J.W., Floyd, W.J., Parry, W.R.: Combinatorially regular polyomino tilings. Discrete Comput. Geom. 35(2), 269–285 (2006)
Castiglione, G., Restivo, A., Vaglica, R.: A reconstruction algorithm for \(L\)-convex polyominoes. Theor. Comput. Sci. 356(1–2), 58–72 (2006)
Conway, A.: Enumerating \(2\)D percolation series by the finite-lattice method: theory. J. Phys. A 28(2), 335–349 (1995)
Conway, A.R., Guttmann, A.J.: On two-dimensional percolation. J. Phys. A 28(4), 891–904 (1995)
Delest, M.-P., Viennot, G.: Algebraic languages and polyominoes enumeration. Theor. Comput. Sci. 34(1–2), 169–206 (1984)
Del Lungo, A., Mirolli, M., Pinzani, R., Rinaldi, S.: A bijection for directed-convex polyominoes. Discrete Math. Theor. Comput. Sci. AA, 133–144 (2001)
Enting, I.G., Guttmann, A.J.: Polygons on the honeycomb lattice. J. Phys. A 22(9), 1371–1384 (1989)
Feretić, S.: A perimeter enumeration of column-convex polyominoes. Discrete Math. Theor. Comput. Sci. 9(1), 57–83 (2007)
Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)
Golomb, S.W.: Checker boards and polyominoes. Am. Math. Mon. 61(10), 675–682 (1954)
Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.): Handbook of Discrete and Computational Geometry. 3rd ed. Discrete Mathematics and Its Applications (Boca Raton). CRC Press, Boca Raton (2018)
Goupil, A., Cloutier, H., Pellerin, M.-E.: Generating functions for inscribed polyominoes. Discrete Appl. Math. 161(1–2), 151–166 (2013)
Grünbaum, B., Shephard, G.C.: Tilings and Patterns. A Series of Books in the Mathematical Sciences. W.H. Freeman and Company, New York (1989)
Hakim, V., Nadal, J.P.: Exact results for 2D directed animals on a strip of finite width. J. Phys. A 16(7), L213–L218 (1983)
Heubach, S., Mansour, T.: Combinatorics of Compositions and Words. Discrete Mathematics and Its Applications (Boca Raton). CRC Press, Boca Raton (2010)
Hou, Q.-H., Mansour, T.: Kernel method and linear recurrence system. J. Comput. Appl. Math. 216(1), 227–242 (2008)
Jensen, I.: Enumerations of lattice animals and trees. J. Stat. Phys. 102(3–4), 865–881 (2001)
Jensen, I., Guttmann, A.J.: Statistics of lattice animals (polyominoes) and polygons. J. Phys. A 33(29), L257–L263 (2000)
Klarner, D.A.: Some results concerning polyominoes. Fibonacci Quart. 3, 9–20 (1965)
Klarner, D.A.: Packing a rectangle with congruent \(n\)-ominoes. J. Comb. Theory 7, 107–115 (1969)
Klarner, D.: My life among the polyominoes. Nieuw Arch. Wisk. 29(2), 156–177 (1981)
Knopfmacher, A., Mansour, T.: Up-smooth samples of geometric variables. J. Comb. Math. Comb. Comput. 83, 51–63 (2012)
Knopfmacher, A., Mansour, T., Munagi, A.: Smooth compositions and smooth words. Pure Math. Appl. 22(2), 209–226 (2011)
Mansour, T.: Smooth partitions and Chebyshev polynomials. Bull. Lond. Math. Soc. 41(6), 961–970 (2009)
Peard, P.J., Gaunt, D.S.: \(1/d\)-expansions for the free energy of lattice animal models of a self-interacting branched polymer. J. Phys. A 28(21), 6109–6124 (1995)
Prellberg, T., Brak, R.: Critical exponents from nonlinear functional equations for partially directed cluster models. J. Stat. Phys. 78(3–4), 701–730 (1995)
Privman, V., Švrakić, N.M.: Difference equations in statistical mechanics. I. Cluster statistics models. J. Stat. Phys. 51(5–6), 1091–1110 (1988)
Privman, V., Švrakić, N.M.: Directed Models of Polymers, Interfaces, and Clusters: Scaling and Finite-Size Properties. Lecture Notes in Physics, vol. 338. Springer, Berlin (1989)
Prodinger, H.: The kernel method: a collection of examples. Sém. Lothar. Comb. 50, # B50f (2003/04)
Temperley, H.N.V.: Combinatorial problems suggested by the statistical mechanics of domains and of rubber-like molecules. Phys. Rev. 103(1), 1–16 (1956)
Viennot, G.: Problèmes combinatoires posés par la physique statistique. Astérisque 121–122, 225–246 (1985)
Viennot, X.G.: A survey of polyominoes enumeration. In: 4th International Conference on Formal Power Series and Algebraic Combinatorics (Montreal 1992). Publications du Laboratoire de Combinatoire et d’Informatique Mathématique, vol. 11, pp. 399–420. LACIM, Montreal (1992)
Zeilberger, D.: The umbral transfer-matrix method. I. Foundations. J. Comb. Theory Ser. A 91(1–2), 451–463 (2000)
Acknowledgements
We thank the anonymous referees for their careful reading of our manuscript and their insightful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: Kenneth Clarkson
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mansour, T., Shabani, A.S. Smooth Column Convex Polyominoes. Discrete Comput Geom 68, 525–539 (2022). https://doi.org/10.1007/s00454-022-00405-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-022-00405-9