[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the Reconstruction Problem for Pascal Lines

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Given a sextuple of distinct points ABCDEF on a conic, arranged into an array \(\big [ \begin{array}{ccc} A &{} B &{} C\\ F &{} E &{} D \end{array} \big ],\) Pascal’s theorem says that the points \(AE \cap BF, BD \cap CE, AD \cap CF\) are collinear. The line containing them is called the Pascal of the array, and one gets altogether 60 such lines by permuting the points. In this paper we prove that the initial sextuple can be explicitly reconstructed from four specifically chosen Pascals. The reconstruction formulae are encoded by some transvectant identities which are proved using the graphical calculus for binary forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. One can find a proof in virtually any book on elementary projective geometry, e.g., Pedoe [21, Ch. IX] or Seidenberg [25, Ch. 6]. It is doubtful whether Pascal himself had a proof.

  2. If one tries to draw a diagram of the sextuple together with all 60 of its Pascals, a dense and incomprehensible profusion of ink is the usual outcome. The curious reader is referred to http://mathworld.wolfram.com/PascalLines.html.

  3. The conic itself is fixed throughout, and as such assumed to be known.

  4. It has a close affinity to the classical symbolic calculus as practiced by the German school of invariant theorists in the nineteenth century (cf. [7, 11, 17]). Section 2 of [1] explains the precise correspondence between these two formalisms.

References

  1. Abdesselam, A.: On the volume conjecture for classical spin networks. J. Knot Theory Ramif. 21(3), 1250022 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdesselam, A., Chipalkatti, J.: Brill–Gordan loci, transvectants and an analogue of the Foulkes conjecture. Adv. Math. 208(2), 491–520 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker, H.F.: Principles of Geometry, vol. II. Cambridge University Press, Cambridge (1930)

    Google Scholar 

  4. Blinn, J.F.: Lines in space, part 8: line(s) through four lines. IEEE Comput. Graph. Appl. 24(5), 100–106 (2004)

    Article  Google Scholar 

  5. Castravet, A.-M., Tevelev, J.: Hypertrees, projections, and moduli of stable rational curves. J. Reine Angew. Math. 675, 121–180 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Chipalkatti, J.: On the coincidences of Pascal lines. Forum Geom. 16, 1–21 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Clebsch, A.: Theorie der Binären Algebraischen Formen. B.G. Teubner, Leipzig (1872)

    MATH  Google Scholar 

  8. Conway, J., Ryba, A.: The Pascal mysticum demystified. Math. Intell. 34(3), 4–8 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cvitanović, P.: Group Theory. Birdtracks, Lie’s, and Exceptional Groups. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  10. Dolotin, V., Morozov, A.: Introduction to Non-linear Algebra. World Scientific, Hackensack (2007)

    Book  MATH  Google Scholar 

  11. Grace, J.H., Young, A.: The Algebra of Invariants. Chelsea, New York (1962)

    MATH  Google Scholar 

  12. Harris, J.: Galois groups of enumerative problems. Duke Math. J. 46(4), 685–724 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Howard, B., Millson, J., Snowden, A., Vakil, R.: The equations for the moduli space of \(n\) points on the line. Duke Math. J. 146(2), 175–226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Joubert, P.: Sur l’équation du sixième degré. C. R. Acad. Sci. Paris 64, 1025–1029 (1867)

    Google Scholar 

  15. Kadison, L., Kromann, M.T.: Projective Geometry and Modern Algebra. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  16. Kraft, H.: A result of Hermite and equations of degree 5 and 6. J. Algebra 297(1), 234–253 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kung, J.P.S., Rota, G.-C.: The invariant theory of binary forms. Bull. Am. Math. Soc. (N.S.) 10(1), 27–85 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lafforgue, V.: Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale (2012). arXiv:1209.5352

  19. Olver, P.J.: Classical Invariant Theory. London Mathematical Society Student Texts, vol. 44. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  20. Pedoe, D.: How many Pascal lines has a sixpoint? Math. Gaz. 25(264), 110–111 (1941)

    Article  Google Scholar 

  21. Pedoe, D.: Geometry: A Comprehensive Course. Dover Books on Advanced Mathematics, 2nd edn. Dover, New York (1988)

    MATH  Google Scholar 

  22. Richter-Gebert, J., Lebmeir, P.: Diagrams, tensors and geometric reasoning. Discrete Comput. Geom. 42(2), 305–334 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Salmon, G.: A Treatise on Conic Sections, 6th edn. Chelsea, New York (2005)

    MATH  Google Scholar 

  24. Schreck, P., Mathis, P., Marinković, V., Janičić, P.: Wernick’s list: a final update. Forum Geom. 16, 69–80 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Seidenberg, A.: Lectures in Projective Geometry. Van Nostrand, New York (1962)

    MATH  Google Scholar 

  26. Wernick, W.: Triangle constructions with three located points. Math. Mag. 55(4), 227–230 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaydeep Chipalkatti.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdesselam, A., Chipalkatti, J. On the Reconstruction Problem for Pascal Lines. Discrete Comput Geom 60, 381–405 (2018). https://doi.org/10.1007/s00454-018-9981-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-9981-4

Keywords

Mathematics Subject Classification

Navigation