Abstract
The contact polytope of a lattice is the convex hull of its shortest vectors. In this paper we classify the facets of the contact polytope of the Leech lattice up to symmetry. There are 1,197,362,269,604,214,277,200 many facets in 232 orbits.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Avis, D.: A C-implementation of the reverse search vertex enumeration algorithm. School of Computer Science, McGill University, Montreal, Canada 1993. http://www-cgrl.cs.mcgill.ca/~avis/C/lrs.html (Software)
Ballinger, B., Blekherman, G., Cohn, H., Giansiracusa, N., Kelly, E., Schürmann, A.: Experimental study of energy-minimizing point configurations on spheres. Exp. Math. 18, 257–283 (2009)
Bremner, D., Dutour Sikirić, M., Schürmann, A.: Polyhedral representation conversion up to symmetries. In: Proceedings of the 2006 CRM Workshop on Polyhedral Computation. AMS/CRM Lecture Notes, vol. 48, pp. 45–71 (2009)
Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989)
Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20, 99–148 (2007)
Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, Berlin (1999)
Dutour Sikirić, M.: Polyhedral package. http://www.liga.ens.fr/~dutour (Software)
Dutour Sikirić, M.: Contact polytopes of lattices. http://www.liga.ens.fr/~dutour
Dutour Sikirić, M., Schürmann, A., Vallentin, F.: Complexity and algorithms for computing Voronoi cells of lattices. Math. Comput. 267, 1713–1731 (2009)
Dutour Sikirić, M., Schürmann, A., Vallentin, F.: The contact polytope of the Leech lattice (complete version). arXiv:0906.1427 [math.MG]
Fukuda, K.: cdd+ reference manual. Institute for operations research, Swiss Federal Institute of Technology, Zürich, Switzerland, 1995. http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html (Software)
Hazewinkel, M., Hesselink, W., Siersma, D., Veldkamp, F.D.: The ubiquity of Coxeter–Dynkin diagrams (an introduction to the A−D−E problem). Nieuw. Arch. Wisk. 25, 257–307 (1977)
Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)
Laurent, M., Deza, M.: Geometry of Cuts and Metrics. Springer, Berlin (1997)
Lemmens, P.W., Seidel, J.J.: Equiangular lines. J. Algebra 24, 494–512 (1973)
Leon, J.S.: Permutation group algorithms based on partitions, I: Theory and algorithms. J. Symb. Comput. 12, 533–583 (1991)
Leon, J.S.: Partitions, refinements, and permutation group computation. In: Groups and Computation II. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 28, pp. 123–158 (1997)
Rajan, D.S., Shende, A.M.: A characterization of root lattices. Discrete Math. 161, 309–314 (1996)
The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.4.6, 2005. http://www.gap-system.org (Software)
Tutte, W.T.: A family of cubical graphs. Proc. Camb. Philos. Soc. 43, 459–474 (1947)
Ziegler, G.M.: Lectures on Polytopes. Springer, Berlin (1995).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Dutour Sikirić, M., Schürmann, A. & Vallentin, F. The Contact Polytope of the Leech Lattice. Discrete Comput Geom 44, 904–911 (2010). https://doi.org/10.1007/s00454-010-9266-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-010-9266-z