Abstract
In this paper we prove that if two self-similar tiling systems, with respective stretching factors λ 1 and λ 2, have a common factor which is a nonperiodic tiling system, then λ 1 and λ 2 are multiplicatively dependent.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Bès, A.: An extension of the Cobham–Semënov theorem. J. Symb. Log. 65, 201–211 (2000)
Bruyère, V., Hansel, G.: In: Recognizable Sets of Numbers in Nonstandard Bases. Lecture Notes in Comput. Sci., vol. 911, pp. 167–179. Springer, Berlin (1995)
Bruyère, V., Hansel, G.: Bertrand numeration systems and recognizability. Theor. Comput. Sci. 181, 17–43 (1997). Latin American Theoretical Informatics (Valparaíso, 1995)
Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc. S. Stevin 1, 191–238 (1994)
Cobham, A.: On the base-dependence of sets of numbers recognizable by finite automata. Math. Syst. Theory 3, 186–192 (1969)
Cobham, A.: Uniform tag sequences. Math. Syst. Theory 6, 164–192 (1972)
Durand, F.: Sur les ensembles d’entiers reconnaissables. J. Théor. Nombres Bordeaux 10, 65–84 (1998)
Durand, F.: A generalization of Cobham’s theorem. Theory Comput. Syst. 31, 169–185 (1998)
Durand, F.: A theorem of Cobham for non-primitive substitutions. Acta Arith. 104, 225–241 (2002)
Eilenberg, S.: Automata, Languages, and Machines, vol. A. Pure and Applied Mathematics, vol. 58. Academic Press, New York (1974)
Fabre, S.: Une généralisation du théorème de Cobham. Acta Arith. 67, 197–208 (1994)
Fagnot, I.: Sur les facteurs des mots automatiques. Theor. Comput. Sci. 172, 67–89 (1997)
Hansel, G.: A propos d’un théorème de Cobham. In: Perrin, D. (ed.) Actes de la Fête des Mots. GRECO de Programmation, Rouen (1982)
Hansel, G.: Systèmes de numération indépendants et syndéticité. Theor. Comput. Sci. 204, 119–130 (1998)
Holton, C., Zamboni, L.: Directed graphs and substitutions. Theor. Comput. Syst. 34, 545–564 (2001)
Holton, C., Radin, C., Sadun, L.: Conjugacies for tiling dynamical systems. Commun. Math. Phys. 254(2), 343–359 (2005)
Michaux, C., Villemaire, R.: Presburger arithmetic and recognizability of sets of natural numbers by automata: new proofs of Cobham’s theorem and Semenov’s theorem. Ann. Pure Appl. Log. 77, 251–277 (1996)
Petersen, K.: Factor maps between tiling dynamical systems. Forum Math. 11(4), 503–512 (1999)
Radin, C., Sadun, L.: Isomorphism of hierarchical structures. Ergod. Theor. Dyn. Syst. 21(4), 1239–1248 (2001)
Rudolph, D.J.: Markov tilings of R n and representations of R n actions. In: Measure and Measurable Dynamics, Rochester, NY, 1987. Contemp. Math., vol. 94, pp. 271–290. Amer. Math. Soc., Providence (1989)
Semenov, A.L.: The Presburger nature of predicates that are regular in two number systems. Sib. Math. J. 18, 289–299 (1977)
Solomyak, B.: Dynamics of self-similar tilings. Ergod. Theory Dyn. Syst. 17, 695–738 (1997)
Solomyak, B.: Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discrete Comput. Geom. 20, 265–279 (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cortez, M.I., Durand, F. Self-Similar Tiling Systems, Topological Factors and Stretching Factors. Discrete Comput Geom 40, 622–640 (2008). https://doi.org/10.1007/s00454-008-9108-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-008-9108-4