Abstract
β-oxidation of fatty acids is an important metabolic pathway and is a shared function between mitochondria and peroxisomes in mammalian cells. On the other hand, peroxisomes are the sole site for the degradation of fatty acids in yeast. The first reaction of this pathway is catalyzed by the enzyme acyl CoA oxidase housed in the matrix of peroxisomes. Studies in various model organisms have reported the conserved function of the protein in fatty acid oxidation. The importance of this enzyme is highlighted by the lethal conditions caused in humans due to its altered function. In this review, we discuss various aspects ranging from gene expression, structure, folding, and import of the protein in both yeast and human cells. Further, we highlight recent findings on the role of the protein in human health and aging, and discuss the identified mutations in the protein associated with debilitating conditions in patients.
Similar content being viewed by others
Data availability
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
References
Abdolyousefi EN, Motalleb G et al (2022) Association between ACOX1 and NRF1 gene expression and Hepatitis B and C virus infections and hepatocellular carcinoma in liver transplant patients. Exp Clin Transplant 20(1):52–58. https://doi.org/10.6002/ect.2021.0175
Arlia-Ciommo A, Leonov A et al (2018) Caloric restriction delays yeast chronological aging by remodeling carbohydrate and lipid metabolism, altering peroxisomal and mitochondrial functionalities, and postponing the onsets of apoptotic and liponecrotic modes of regulated cell death. Oncotarget 9(22):16163–16184. https://doi.org/10.18632/oncotarget.24604
Arora C, Padmanabha H et al (2022) Pseudo-neonatal adrenoleukodystrophy: a rare peroxisomal disorder. Ann Indian Acad Neurol 25(2):275–278. https://doi.org/10.4103/aian.AIAN_486_21
Aubourg P, Wanders R (2013) Peroxisomal disorders. Handb Clin Neurol 113:1593–1609. https://doi.org/10.1016/b978-0-444-59565-2.00028-9
Ayer A, Gourlay CW et al (2014) Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae. FEMS Yeast Res 14(1):60–72. https://doi.org/10.1111/1567-1364.12114
Banerjee R, Joshi N et al (2020) Cell organelles and yeast longevity: an intertwined regulation. Curr Genet 66(1):15–41. https://doi.org/10.1007/s00294-019-01035-0
Carrozzo R, Bellini C et al (2008) Peroxisomal acyl-CoA-oxidase deficiency: two new cases. Am J Med Genet Part A 146a(13):1676–1681. https://doi.org/10.1002/ajmg.a.32298
de Carvalho C, Caramujo MJ (2018) The various roles of fatty acids. Molecules. https://doi.org/10.3390/molecules23102583
Chen XF, Tian MX et al (2018) SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. EMBO Rep. https://doi.org/10.15252/embr.201745124
Chu R, Varanasi U et al (1995) Overexpression and characterization of the human peroxisomal acyl-CoA oxidase in insect cells. J Biol Chem 270(9):4908–4915. https://doi.org/10.1074/jbc.270.9.4908
Chung KW, Lee EK et al (2018) Impairment of PPARα and the fatty acid oxidation pathway aggravates renal fibrosis during aging. J Am Soc Nephrol 29(4):1223–1237. https://doi.org/10.1681/asn.2017070802
Chung HL, Wangler MF et al (2020) Loss- or gain-of-function mutations in ACOX1 cause axonal loss via different mechanisms. Neuron 106(4):589-606.e586. https://doi.org/10.1016/j.neuron.2020.02.021
Deb R, Nagotu S (2017) Versatility of peroxisomes: an evolving concept. Tissue Cell 49(2 Pt B):209–226. https://doi.org/10.1016/j.tice.2017.03.002
Ding J, Xia C et al (2022) MiR-103-3p promotes hepatic steatosis to aggravate nonalcoholic fatty liver disease by targeting of ACOX1. Mol Biol Rep 49(8):7297–7305. https://doi.org/10.1007/s11033-022-07515-w
Dmochowska A, Dignard D et al (1990) Structure and transcriptional control of the Saccharomyces cerevisiae POX1 gene encoding acyl-coenzyme A oxidase. Gene 88(2):247–252. https://doi.org/10.1016/0378-1119(90)90038-s
El Hajj HI, Vluggens A et al (2012) The inflammatory response in acyl-CoA oxidase 1 deficiency (pseudoneonatal adrenoleukodystrophy). Endocrinology 153(6):2568–2575. https://doi.org/10.1210/en.2012-1137
Erdbrügger P, Fröhlich F (2020) The role of very long chain fatty acids in yeast physiology and human diseases. Biol Chem 402(1):25–38. https://doi.org/10.1515/hsz-2020-0234
Ferdinandusse S, Denis S et al (2007) Clinical, biochemical, and mutational spectrum of peroxisomal acyl-coenzyme A oxidase deficiency. Hum Mutat 28(9):904–912. https://doi.org/10.1002/humu.20535
Fischer S, Bürgi J et al (2023) Phosphorylation of the receptor protein Pex5p modulates import of proteins into peroxisomes. Biol Chem 404(2–3):135–155. https://doi.org/10.1515/hsz-2022-0168
Fournier B, Saudubray JM et al (1994) Large deletion of the peroxisomal acyl-CoA oxidase gene in pseudoneonatal adrenoleukodystrophy. J Clin Investig 94(2):526–531. https://doi.org/10.1172/jci117365
Fransen M, Lismont C et al (2017) The peroxisome-mitochondria connection: how and why? Int J Mol Sci. https://doi.org/10.3390/ijms18061126
Freitas MO, Francisco T et al (2015) The peroxisomal protein import machinery displays a preference for monomeric substrates. Open Biol 5(4):140236. https://doi.org/10.1098/rsob.140236
Friedman SL, Neuschwander-Tetri BA et al (2018) Mechanisms of NAFLD development and therapeutic strategies. Nat Med 24(7):908–922. https://doi.org/10.1038/s41591-018-0104-9
Fujiki Y, Matsuzono Y et al (2006) Import of peroxisomal membrane proteins: the interplay of Pex3p- and Pex19p-mediated interactions. Biochem Biophys Acta 1763(12):1639–1646. https://doi.org/10.1016/j.bbamcr.2006.09.030
Funato M, Shimozawa N et al (2006) Aberrant peroxisome morphology in peroxisomal beta-oxidation enzyme deficiencies. Brain Dev 28(5):287–292. https://doi.org/10.1016/j.braindev.2005.10.010
Gimadiev PP, Niiazov AR et al (2019) The diagnostic importance of circulating microRNA for non-alcoholic fatty liver disease. Klin Lab Diagn 64(12):723–729. https://doi.org/10.18821/0869-2084-2019-64-12-723-729
Gurvitz A, Hiltunen JK et al (2001) Saccharomyces cerevisiae Adr1p governs fatty acid beta-oxidation and peroxisome proliferation by regulating POX1 and PEX11. J Biol Chem 276(34):31825–31830. https://doi.org/10.1074/jbc.M105989200
Hasan S, Platta HW et al (2013) Import of proteins into the peroxisomal matrix. Front Physiol 4:261. https://doi.org/10.3389/fphys.2013.00261
He A, Dean JM et al (2021) Peroxisomes as cellular adaptors to metabolic and environmental stress. Trends Cell Biol 31(8):656–670. https://doi.org/10.1016/j.tcb.2021.02.005
Hiltunen JK, Mursula AM et al (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27(1):35–64. https://doi.org/10.1016/s0168-6445(03)00017-2
Jang HS, Noh MR et al (2020) Defective mitochondrial fatty acid oxidation and lipotoxicity in kidney diseases. Front Med 7:65. https://doi.org/10.3389/fmed.2020.00065
Jansuriyakul S, Somboon P et al (2016) The zinc cluster transcriptional regulator Asg1 transcriptionally coordinates oleate utilization and lipid accumulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100(10):4549–4560. https://doi.org/10.1007/s00253-016-7356-4
Karpichev IV, Luo Y et al (1997) A complex containing two transcription factors regulates peroxisome proliferation and the coordinate induction of beta-oxidation enzymes in Saccharomyces cerevisiae. Mol Cell Biol 17(1):69–80. https://doi.org/10.1128/mcb.17.1.69
Karpichev IV, Durand-Heredia JM et al (2008) Binding characteristics and regulatory mechanisms of the transcription factors controlling oleate-responsive genes in Saccharomyces cerevisiae. J Biol Chem 283(16):10264–10275. https://doi.org/10.1074/jbc.M708215200
Kempiński B, Chełstowska A et al (2020) The peroxisomal targeting signal 3 (PTS3) of the budding yeast acyl-CoA oxidase is a signal patch. Front Cell Dev Biol 8:198. https://doi.org/10.3389/fcell.2020.00198
Kim PK, Hettema EH (2015) Multiple pathways for protein transport to peroxisomes. J Mol Biol 427(6 Pt A):1176–1190. https://doi.org/10.1016/j.jmb.2015.02.005
Kim S, Kim KJ (2018) Crystal structure of acyl-CoA oxidase 3 from Yarrowia lipolytica with specificity for short-chain acyl-CoA. J Microbiol Biotechnol 28(4):597–605. https://doi.org/10.4014/jmb.1711.11032
Klein AT, van den Berg M et al (2002) Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J Biol Chem 277(28):25011–25019. https://doi.org/10.1074/jbc.M203254200
Knoblach B, Rachubinski RA (2018) Reconstitution of human peroxisomal β-oxidation in yeast. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foy092
Kunze M, Malkani N et al (2015) Mechanistic Insights into PTS2-mediated peroxisomal protein import: the co-receptor PEX5L drastically increases the interaction strength between the cargo protein and the receptor PEX7. J Biol Chem 290(8):4928–4940. https://doi.org/10.1074/jbc.M114.601575
Lai YH, Liu H et al (2018) MiR-31-5p-ACOX1 axis enhances tumorigenic fitness in oral squamous cell carcinoma via the promigratory prostaglandin E2. Theranostics 8(2):486–504. https://doi.org/10.7150/thno.22059
Leibundgut M, Maier T et al (2008) The multienzyme architecture of eukaryotic fatty acid synthases. Curr Opin Struct Biol 18(6):714–725. https://doi.org/10.1016/j.sbi.2008.09.008
Luo Y, Karpichev IV et al (1996) Purification, identification, and properties of a Saccharomyces cerevisiae oleate-activated upstream activating sequence-binding protein that is involved in the activation of POX1. J Biol Chem 271(20):12068–12075. https://doi.org/10.1074/jbc.271.20.12068
Luo YS, Nicaud JM et al (2002) The acyl-CoA oxidases from the yeast Yarrowia lipolytica: characterization of Aox2p. Arch Biochem Biophys 407(1):32–38. https://doi.org/10.1016/s0003-9861(02)00466-6
MacPherson S, Larochelle M et al (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70(3):583–604. https://doi.org/10.1128/mmbr.00015-06
Masson R, Guerra S et al (2016) Early white matter involvement in an infant carrying a novel mutation in ACOX1. Eur J Paediatr Neurol 20(3):431–434. https://doi.org/10.1016/j.ejpn.2016.02.007
Morita A, Enokizono T et al (2021) Novel ACOX1 mutations in two siblings with peroxisomal acyl-CoA oxidase deficiency. Brain Dev 43(3):475–481. https://doi.org/10.1016/j.braindev.2020.10.011
Motamedi F, Khodagholi F et al (2021) Inhibition of hepatic acyl Coa oxidase 1 (ACOX1), a peroxisome Β-oxidation enzyme, modifies brain fatty acid profile and intrinsic membrane properties in granule cells of rat dentate gyrus. Basic Clin Neurosci. https://doi.org/10.32598/bcn.2021.3500.1
Murray WW, Rachubinski RA (1987) The primary structure of a peroxisomal fatty acyl-CoA oxidase from the yeast Candida tropicalis pK233. Gene 51(2–3):119–128. https://doi.org/10.1016/0378-1119(87)90300-3
Nave KA, Werner HB (2021) Ensheathment and myelination of axons: evolution of glial functions. Annu Rev Neurosci 44:197–219. https://doi.org/10.1146/annurev-neuro-100120-122621
Nötzel C, Lingner T et al (2016) Identification of new fungal peroxisomal matrix proteins and revision of the PTS1 consensus. Traffic. https://doi.org/10.1111/tra.12426
Oaxaca-Castillo D, Andreoletti P et al (2007) Biochemical characterization of two functional human liver acyl-CoA oxidase isoforms 1a and 1b encoded by a single gene. Biochem Biophys Res Commun 360(2):314–319. https://doi.org/10.1016/j.bbrc.2007.06.059
Okazaki K, Takechi T et al (1986) Two acyl-coenzyme A oxidases in peroxisomes of the yeast Candida tropicalis: primary structures deduced from genomic DNA sequence. Proc Natl Acad Sci USA 83(5):1232–1236. https://doi.org/10.1073/pnas.83.5.1232
Ono K, Igata M et al (2018) Identification of microRNA that represses IRS-1 expression in liver. PLoS ONE 13(1):e0191553. https://doi.org/10.1371/journal.pone.0191553
Osumi T, Ishii N et al (1987) Isolation and structural characterization of the rat acyl-CoA oxidase gene. J Biol Chem 262(17):8138–8143. https://doi.org/10.1016/S0021-9258(18)47540-0
Pedersen L, Henriksen A (2005) Acyl-CoA oxidase 1 from Arabidopsis thaliana. Structure of a key enzyme in plant lipid metabolism. J Mol Biol 345(3):487–500. https://doi.org/10.1016/j.jmb.2004.10.062
Poirier Y, Antonenkov VD et al (2006) Peroxisomal beta-oxidation–a metabolic pathway with multiple functions. Biochem Biophys Acta 1763(12):1413–1426. https://doi.org/10.1016/j.bbamcr.2006.08.034
Poll-The BT, Roels F et al (1988) A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy). Am J Hum Genet 42(3):422–434
Rajvanshi PK, Arya M et al (2017) The stress-regulatory transcription factors Msn2 and Msn4 regulate fatty acid oxidation in budding yeast. J Biol Chem 292(45):18628–18643. https://doi.org/10.1074/jbc.M117.801704
Renne MF, Hariri H (2021) Lipid droplet-organelle contact sites as hubs for fatty acid metabolism, trafficking, and metabolic channeling. Front Cell Dev Biol 9:726261. https://doi.org/10.3389/fcell.2021.726261
Rosewich H, Waterham HR et al (2006) Pitfall in metabolic screening in a patient with fatal peroxisomal beta-oxidation defect. Neuropediatrics 37(2):95–98. https://doi.org/10.1055/s-2006-923943
Rottensteiner H, Kal AJ et al (1996) Pip2p: a transcriptional regulator of peroxisome proliferation in the yeast Saccharomyces cerevisiae. EMBO J 15(12):2924–2934
Schrader M, Fahimi HD (2008) The peroxisome: still a mysterious organelle. Histochem Cell Biol 129(4):421–440. https://doi.org/10.1007/s00418-008-0396-9
Schrader M, Costello J et al (2015) Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 38(4):681–702. https://doi.org/10.1007/s10545-015-9819-7
Schweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68(3):501–517. https://doi.org/10.1128/mmbr.68.3.501-517.2004
Sharp P, Poulos A et al (1987) Structure and lipid distribution of polyenoic very-long-chain fatty acids in the brain of peroxisome-deficient patients (Zellweger syndrome). Biochem J 248(1):61–67. https://doi.org/10.1042/bj2480061deb
Shen M, Chen Q et al (2023) A de novo heterozygous variant in ACOX1 gene cause Mitchell syndrome: the first case in China and literature review. BMC Med Genomics 16(1):156. https://doi.org/10.1186/s12920-023-01577-w
Shi H, Huang X et al (2021) Acyl-CoA oxidase ACOX-1 interacts with a peroxin PEX-5 to play roles in larval development of Haemonchus contortus. PLoS Pathog 17(7):e1009767. https://doi.org/10.1371/journal.ppat.1009767
Skoneczny M, Rytka J (2000) Oxygen and haem regulate the synthesis of peroxisomal proteins: catalase A, acyl-CoA oxidase and Pex1p in the yeast Saccharomyces cerevisiae; the regulation of these proteins by oxygen is not mediated by haem. Biochem J 350(Pt 1):313–319
Sonani RR, Blat A et al (2022) Crystal structures of apo- and FAD-bound human peroxisomal acyl-CoA oxidase provide mechanistic basis explaining clinical observations. Int J Biol Macromol 205:203–210. https://doi.org/10.1016/j.ijbiomac.2022.02.008
Stanley WA, Pursiainen NV et al (2007) A previously unobserved conformation for the human Pex5p receptor suggests roles for intrinsic flexibility and rigid domain motions in ligand binding. BMC Struct Biol 7(1):24. https://doi.org/10.1186/1472-6807-7-24
Suzuki Y, Iai M et al (2002) Peroxisomal acyl CoA oxidase deficiency. J Pediatr 140(1):128–130. https://doi.org/10.1067/mpd.2002.120511
Tahri-Joutey M, Andreoletti P et al (2021) Mechanisms mediating the regulation of peroxisomal fatty acid beta-oxidation by PPARα. Int J Mol Sci. https://doi.org/10.3390/ijms22168969
Thepnok P, Ratanakhanokchai K et al (2014) The novel zinc cluster regulator Tog1 plays important roles in oleate utilization and oxidative stress response in Saccharomyces cerevisiae. Biochem Biophys Res Commun 450(4):1276–1282. https://doi.org/10.1016/j.bbrc.2014.06.128
Tiniakos DG, Vos MB et al (2010) Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol 5:145–171. https://doi.org/10.1146/annurev-pathol-121808-102132
Titorenko VI, Nicaud JM et al (2002) Acyl-CoA oxidase is imported as a heteropentameric, cofactor-containing complex into peroxisomes of Yarrowia lipolytica. J Cell Biol 156(3):481–494. https://doi.org/10.1083/jcb.200111075
Turcotte B, Liang XB et al (2010) Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res 10(1):2–13. https://doi.org/10.1111/j.1567-1364.2009.00555.x
Vamecq J, Andreoletti P et al (2018) Peroxisomal acyl-CoA oxidase type 1: anti-inflammatory and anti-aging properties with a special emphasis on studies with LPS and argan oil as a model transposable to aging. Oxid Med Cell Longev 2018:6986984. https://doi.org/10.1155/2018/6986984
Walter T, Erdmann R (2019) Current advances in protein import into peroxisomes. Protein J 38(3):351–362. https://doi.org/10.1007/s10930-019-09835-6
Wanders RJ, Waterham HR (2006) Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochem Biophys Acta 1763(12):1707–1720. https://doi.org/10.1016/j.bbamcr.2006.08.010
Wanders RJ, Ferdinandusse S et al (2010) Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta 1801(3):272–280. https://doi.org/10.1016/j.bbalip.2010.01.001
Wanders RJ, Waterham HR et al (2015) Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front Cell Dev Biol 3:83. https://doi.org/10.3389/fcell.2015.00083
Wang TW, Lewin AS et al (1992) A negative regulating element controlling transcription of the gene encoding acyl-CoA oxidase in Saccharomyces cerevisiae. Nucleic Acids Res 20(13):3495–3500. https://doi.org/10.1093/nar/20.13.3495
Wang T, Luo Y et al (1994) The POX1 gene encoding peroxisomal acyl-CoA oxidase in Saccharomyces cerevisiae is under the control of multiple regulatory elements. J Biol Chem 269(39):24480–24485. https://doi.org/10.1016/S0021-9258(19)51109-7
Wang RY, Monuki ES et al (2014) Effects of hematopoietic stem cell transplantation on acyl-CoA oxidase deficiency: a sibling comparison study. J Inherit Metab Dis 37(5):791–799. https://doi.org/10.1007/s10545-014-9698-3
Wang JJ, Zhang YT et al (2019) miR-222 targets ACOX1, promotes triglyceride accumulation in hepatocytes. Hepatobiliary Pancreat Dis Int 18(4):360–365. https://doi.org/10.1016/j.hbpd.2019.05.002
Wu D, Yang Y et al (2022) Increased mitochondrial fission drives the reprogramming of fatty acid metabolism in hepatocellular carcinoma cells through suppression of Sirtuin 1. Cancer Communun 42(1):37–55. https://doi.org/10.1002/cac2.12247
Wu N, Ma Y-C et al (2023) The metabolite alpha-ketobutyrate extends lifespan by promoting peroxisomal function in C. elegans. Nat Commun 14(1):240. https://doi.org/10.1038/s41467-023-35899-1
You L, Chen J et al (2020) Enterovirus 71 induces neural cell apoptosis and autophagy through promoting ACOX1 downregulation and ROS generation. Virulence 11(1):537–553. https://doi.org/10.1080/21505594.2020.1766790
Zhang X, Li K et al (2016) Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans. Proc Natl Acad Sci USA 113(36):10055–10060. https://doi.org/10.1073/pnas.1608262113
Zheng FM, Chen WB et al (2019) ACOX1 destabilizes p73 to suppress intrinsic apoptosis pathway and regulates sensitivity to doxorubicin in lymphoma cells. BMB Rep 52(9):566–571. https://doi.org/10.5483/BMBRep.2019.52.9.094
Zheng R, Wang Y (2023) SLC9A5 promotes tumor growth and cell motility via ACOX1-mediated peroxisomal fatty acid oxidation. Exp Cell Res 430(1):113700. https://doi.org/10.1016/j.yexcr.2023.113700
Zipor G, Haim-Vilmovsky L et al (2009) Localization of mRNAs coding for peroxisomal proteins in the yeast, Saccharomyces cerevisiae. Proc Natl Acad Sci USA 106(47):19848–19853. https://doi.org/10.1073/pnas.0910754106
Acknowledgements
Our sincere apologies to all our colleagues for any publication not being cited due to space limitations. This work was supported by Department of Biotechnology (DBT), Government of India [BT/PR25097/NER/95/1013/2017] Grant.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Communicated by Martine Collart.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kashyap, I., Deb, R., Battineni, A. et al. Acyl CoA oxidase: from its expression, structure, folding, and import to its role in human health and disease. Mol Genet Genomics 298, 1247–1260 (2023). https://doi.org/10.1007/s00438-023-02059-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00438-023-02059-5